
Intro to Logic and Proofs

Propositions

A proposition is a declarative sentence (that

is, a sentence that declares a fact) that is

either true or false, but not both.

Examples:

• It is raining today.

• Washington D.C. is the capital of the

United States

• Houston is the capital of Texas.

• 1 + 1 = 2.
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Some sentences are not propositions (that

is, no truth value can be assigned).

Examples:

• What time is it?

• Read this carefully.

• x + 1 = 2.

• x + y = z.
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Truth Values and Propositional Vari-

ables

To each proposition a truth value is as-

signed: T for true and F for false.

We will often use propositional variables

(most commonly: p, q, r, s, . . .) to repre-

sent a proposition, especially when forming

compound propositions.
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Compound Propositions

Examples:

• It is not raining today. (¬p)

• Today’s temperature is 72 degrees, and

the humidity is 50%. (p ∧ q)

• Washington D.C. is the capital of the

United States, or Houston is the capital

of Texas. (p ∨ q)

• If it is raining today, then it is cloudy

today. (p→ q)

• It is raining today if and only if it is

cloudy. (p↔ q)
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Logical Connectives

1. negation (¬)

2. conjunction (∧)

3. disjunction (∨)

4. conditional (→)

5. biconditional (↔)
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1. Negation (¬p)

The negation of a proposition p, denoted

by ¬p, and read “not p”, is the statement

¬p : “It is not the case that” p

The truth value of the negation of p is the

opposite of the truth value of p.
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2. Conjunction (p ∧ q)

The conjunction of two propositions p and

q, denoted by p ∧ q, is the statement

p ∧ q : p “and” q

The conjunction p ∧ q is true when both p

and q are true, and is false otherwise.
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3. Disjunction (p ∨ q)

The disjunction of two propositions p and

q, denoted by p ∨ q, is the statement

p ∨ q : p “or” q

The disjunction p ∨ q is false when both p

and q are false, and is true otherwise.
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3. Disjunction (p ∨ q)

The logical connective ∨ is called inclusive

or. This means if p and q are both true,

then p ∨ q is true.

Note that the word “or” sometimes means

exclusive or, denoted ⊕.

Example: “Soup or salad comes with an

entree.”
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4. Conditional Statement (p→ q)

The conditional statement p → q, is the

proposition

p→ q : “If” p, “then” q

The conditional statement p → q is false

when p is true and q is false, and true oth-

erwise.

p is called the hypothesis (or antecedent or

premise) and q is called the conclusion (or

consequence).
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4. Conditional Statement (p→ q)

Note: There are many ways to express the

conditional statement p→ q. Here are sev-

eral common forms:

“if p, then q”

“if p, q”

“p is sufficient for q”

“a sufficient condition for q is p”

“q is necessary for p”

“a necessary condition for p is q”

“p implies q”

“p only if q”

“q if p”

“q when p”

“q whenever p”

“q follows from p”
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5. Biconditional Statement (↔)

The biconditional statement p↔ q, is the

proposition

p↔ q : p “if and only if” q

The conditional statement p ↔ q is true

when p and q have the same truth values,

and is false otherwise.
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5. Biconditional Statement (↔)

Common ways to express p↔ q in English:

“p if and only if q”

“p iff q”

“p is necessary and sufficient for q”

“p implies q, and conversely”
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5. Biconditional Statement (↔)

Note: In informal language, a biconditional

is sometimes expressed in the form of a

conditional, where the converse is implied,

but not stated. For example:

“If you finish your meal, then you can have

dessert.”
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Truth tables (¬, ∧, ∨)

p ¬p

T

F

p q p ∧ q

T T

T F

F T

F F

p q p ∧ q

T T

T F

F T

F F
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Truth table (p→ q)

p q p→ q

T T

T F

F T

F F

Example: If you score 100% on the final, then you

get an A in the class.

p : You score 100% on the final.

q : You get an A in the class.
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Truth table (p↔ q)

p q p↔ q

T T

T F

F T

F F

Example: You get an A in the class if and only if

your course average is 90% or above.

p : You get an A in the class.

q : Your course average is 90% or above.
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Converse, Inverse, and Contrapositive

Given the conditional statement

p→ q

we sometimes refer to three related condi-

tional statements

• converse (q → p)

• inverse (¬p→ ¬q)

• contrapositive (¬q → ¬p)

18



Example

p: It is raining today.

q: It is cloudy today.

• original (p→ q):

If it’s raining, then it’s cloudy.

• converse (q → p):

If it’s cloudy, then it’s raining.

• inverse (¬p→ ¬q):

If it’s not raining, then it’s not cloudy.

• contrapositive (¬q → ¬p):

If it’s not cloudy, then it’s not raining.
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Truth table (¬q → ¬p)

p q ¬q ¬p ¬q → ¬p

T T

T F

F T

F F

p q p→ q

T T

T F

F T

F F

Important Fact:

The contrapositive (¬q → ¬p) always has

the same truth-value as the original condi-

tional (p→ q).
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Translating English Sentences

Let p, q, r be the propositions

p: You get an A on the final exam.

q: You do every exercise in the book.

r: You get an A in this class.

Translate:

(a) You get an A in this class, but you do

not do every exercise in this book.
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Translating English Sentences

Let p, q, r be the propositions

p: You get an A on the final exam.

q: You do every exercise in the book.

r: You get an A in this class.

Translate:

(b) To get an A in this class, it is necessary

for you to get an A on the final.
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Translating English Sentences

Let p, q, r be the propositions

p: You get an A on the final exam.

q: You do every exercise in the book.

r: You get an A in this class.

Translate:

(c) Getting an A on the final and doing

every exercise in this book is sufficient for

getting an A in this class.

23



Logical Equivalence

Compound propositions that have the same

truth values in all possible cases are called

logically equivalent.

The notation p ≡ q means that propositions

p and q are logically equivalent.
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Equivalence of p→ q and ¬p ∨ q

p q p→ q

T T

T F

F T

F F

p q ¬p ¬p ∨ q

T T

T F

F T

F F
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Basic Equivalence Laws

De Morgan’s Laws

¬(p ∨ q) ≡ ¬p ∧ ¬q

¬(p ∧ q) ≡ ¬p ∨ ¬q

Distributive Laws

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)
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Basic Equivalence Laws

Example: Use De Morgan’s Law to ex-

press the negation of the given statement.

p : Jim has an iPhone and he has an iPad.

¬p:
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Basic Equivalence Laws

Example: Use the distributive law to ex-

press the given statement in an equivalent

form.

p : Jim will have cookies, and he will have

coffee or tea.

Logically equivalent statement:
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Equivalence of ¬(p ∨ q) and ¬p ∧ ¬q

p q p ∨ q ¬(p ∨ q)

T T

T F

F T

F F

p q ¬p ¬q ¬p ∧ ¬q

T T

T F

F T

F F
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Equivalence of ¬(p ∧ q) and ¬p ∨ ¬q

p q p ∧ q ¬(p ∧ q)

T T

T F

F T

F F

p q ¬p ¬q ¬p ∨ ¬q

T T

T F

F T

F F
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Equivalence of p∨(q∧r) and (p∨q)∧(p∨r)

p q r q ∧ r p ∨ (q ∧ r) p ∨ q p ∨ r (p ∨ q) ∧ (p ∨ r)

T T T

T T F

T F T

T F F

F T T

F T F

F F T

F F F

31



Equivalence of p∧(q∨r) and (p∧q)∨(p∧r)

p q r q ∨ r p ∧ (q ∨ r) p ∧ q p ∧ r (p ∧ q) ∨ (p ∧ r)

T T T

T T F

T F T

T F F

F T T

F T F

F F T

F F F
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Logical Eqivalences

p ∧ T ≡ p Identity Laws

p ∨ F ≡ p

p ∨ T ≡ T Domination Laws

p ∧ F ≡ F

p ∨ p ≡ p Idempotent Laws

p ∧ p ≡ p

p ∨ q ≡ q ∨ p Commutative Laws

p ∧ q ≡ q ∧ p

(p ∨ q) ∨ r ≡ p ∨ (q ∨ r) Associative Laws

(p ∧ q) ∧ r ≡ p ∧ (q ∧ r)

p ∨ (p ∧ q) ≡ p Absorption Laws

p ∧ (p ∨ q) ≡ p
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Logical Eqivalences

¬(¬p) ≡ p Double Negation Law

p ∨ ¬p ≡ T Negation Laws

p ∧ ¬p ≡ F

¬(p ∧ q) ≡ ¬p ∨ ¬q De Morgan’s Laws

¬(p ∨ q) ≡ ¬p ∧ ¬q

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r) Distributive Laws

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)
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Constructing New Equivalences

From the preceding laws, one can deduce

many other logical equivalences.

Example: Prove ¬(p ∨ (¬p ∧ q)) ≡ ¬p ∧ ¬q
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Tautologies, Contradictions, and Con-

tingencies

A compound proposition that is always true,

no matter what the truth values of the

propositional variables that occur in it, is

called a tautology. (Example: p ∨ ¬p)

A compound proposition that is always false

is called a contradiction. (Example: p∧¬p)

A compound proposition that is neither a

tautology nor a contradiction is called a

contingency. (Example: p→ q)
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Predicates and Quantifiers

Quantifiers

Which of the following conditional state-

ments can be assigned a truth value?

• If 1+1 = 2, then 2+2 =4.

• If the sky is blue, then the grass is green.

• If pigs can fly, then birds can fly.

• If x > 7, then x > 5.

• If x is an odd integer, then 2|x.
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Propositional Functions

A propositional function is a statement

which depends on one or more variables,

denoted P (x), Q(x, y), R(x, y, z), etc., which

takes the form of a proposition once a value

is assigned for each variable.

Examples:

P (x) : x > 3

Q(x, y) : x = y + 3

R(x, y, z) : x + y = z

38



Propositional Functions

Example: Given the propositional func-

tions

P (x) : x > 3

Q(x, y) : x = y + 3

R(x, y, z) : x + y = z,

express the following function values as propo-

sitions and determine their corresponding

truth-values.

• P (2) :

• Q(4,1) :

• R(2,−3,−1) :
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Quantifiers

In English, the words all, some, many, none,

few are used to quantify a range of values

for which a propositional function is true.

Examples:

• All even integers are divisible by 2.

• Some people have green eyes.

• Many people will attend the concert.

• None of the odd integers are divisible

by 2.

• Few people will win the lottery.
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Quantifiers

In mathematics we use the following quan-

tifiers:

• universal quantifier (∀)

• existential quantifier (∃)
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Universal Quantification ( ∀xP (x) )

The universal quantification of P (x), de-

noted ∀xP (x), is the statement:

“For all x (in the domain of discourse), P (x).”

An element x for which P (x) is false is

called a counterexample of ∀xP (x).
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Universal Quantification ( ∀xP (x) )

Alternate forms:

“For all x, P (x).”

“For every x, P (x).”

“For each x, P (x).”

“P(x), for all x.”
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Existential Quantification ( ∃xP (x) )

The existential quantification of P (x),

denoted ∃xP (x), is the statement:

“There exists an element x (in the domain

of discourse) such that P (x).”
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Existential Quantification ( ∃xP (x) )

Alternate forms:

“There exists an x such that P (x).”

“There is at least one value x such that P (x).”

“There is an x such that P (x).”

“For some x, P (x).”

“P (x), for some x.”
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Truth-values and Quantification

Statement True when... False when...

∀xP (x) P (x) is true for every x. There is an x for which

P (x) is false.

∃xP (x) There is an x for which

P (x) is true.

P (x) is false for every x.
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Truth-values and Quantification

Examples: Determine the truth-value of

each statement. (In all cases assume the

domain of discourse the set of real num-

bers.)

• ∀x (x + 1 > x)

• ∀x (3x > 2x)

• ∃x (2x + 5 = 0)

• ∃x (x2 = −1)
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Uniqueness Quantifier ( ∃!xP (x) )

In mathematics, we often want to express

that an equation or problem has a unique

(one and only one) solution.

For this, we have a uniqueness quantifier,

denoted ∃!. The statement ∃!x P (x) reads

“There exists a unique element x such that P (x).”
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Translating English Sentences

Express each statement in terms of quanti-

fiers and the given propositional functions.

Assume the domain of discourse is all peo-

ple.

P (x) : x is a college student.

Q(x) : x pays tuition.

(a) Some people are college students.

(b) All college students pay tuition.

(c) Some college students pay tuition.

(d) All people who pay tuition are college

students.



Bound Vs Free Variables

When a quantifier is used on a variable, we

say that this variable is bound. A variable

on which no quantifiers are used is called

free.

Examples:

• ∃x (x + y = 1)

• ∃z ∀y (x2 + y2 > z)



Logical Equivalences and Quantifiers

Statements involving predicates and quan-

tifiers are logically equivalent if and only if

they have the same truth value no matter

which predicates are substituted into these

statements and which domain of discourse

is used for the variables in these proposi-

tional functions.



Logical Equivalences and Quantifiers

Example:

∀x(P (x) ∧Q(x)) ≡ ∀xP (x) ∧ ∀xQ(x)

Proof: First assume the statement ∀x(P (x)∧Q(x))

is true. This means that if a is in the domain, then

P (a) ∧ Q(a) is true. Hence, P (a) is true and Q(a)

is true. Because P (a) is true and Q(a) is true for

every element in the domain, we can conclude that

∀xP (x) and ∀xQ(x) are both true. This means that

∀xP (x) ∧ ∀xQ(x) is true.



Logical Equivalences and Quantifiers

Example:

∀x(P (x) ∧Q(x)) ≡ ∀xP (x) ∧ ∀xQ(x)

Proof: (continued...) Conversely, suppose the state-

ment ∀xP (x)∧∀xQ(x) is true. It follows that ∀xP (x)

is true and ∀xQ(x) is true. Hence, if a is in the do-

main, then P (a) is true and Q(a) is true. It follows

that for all a, P (a) ∧ Q(a) is true. It follows that

∀x(P (x) ∧Q(x)) is true. Therefore we’ve shown:

∀x(P (x) ∧Q(x)) ≡ ∀xP (x) ∧ ∀xQ(x)



Negation of Quantifiers

We often want to consider the negation of

a quantified statement.

Examples: Express the negation of each

statement.

• S: All students take calculus.

¬S:

• S: Some students like homework.

¬S:
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Negation of Quantifiers

Let’s express the same statements in terms

of quantifiers. First we define the proposi-

tional functions

P (x) : x takes calculus.

Q(x) : x likes homework.

• S: All students take calculus.

S:

¬S:

¬S:

• S: Some students like homework.

S:

¬S:

¬S:
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De Morgan’s Laws for Quantifiers

The previous examples illustrate the follow-

ing two equivalences known as De Mor-

gan’s laws for quantifiers.

• ¬(∀xP (x)) ≡ ∃x (¬P (x))

• ¬(∃xP (x)) ≡ ∀x (¬P (x))

51



De Morgan’s Laws for Quantifiers

Examples: Find the negation of each ex-

pression

• S: ∀x (x2 > x)

¬S:

• S: ∃x (x2 = 2)

¬S:
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De Morgan’s Laws for Quantifiers

Example: Show that

¬(∀x (P (x)→ Q(x))) ≡ ∃x (P (x) ∧ ¬Q(x))

Proof:

¬(∀x (P (x)→ Q(x))) ≡
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Nested Quantifiers

Nested quantifiers occur when one quan-

tifier is within the scope of another.

Examples (Assume the domain of discourse

is the set real numbers)

• ∀x∀y (x + y = y + x)

For all real numbers x and y, the sum

x + y is equal to the sum y + x.

• ∀x∃y (x + y = 0)

For each real number x, there exists a

real number y such that x + y = 0.

54



Order of Quantifiers

Note that changing the order of quantifiers

may change the meaning and truth-value

of an expression.

Example: Let Q(x, y) denote “x + y = 0.”

• ∀x∃y Q(x, y)

For each real number x, there exists a

real number y such that x + y = 0.

• ∃y ∀xQ(x, y)

There exists a real number y such that

for all real numbers x, x + y = 0.
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Truth-values and Nested Quantifiers

Statement True when... False when...

∀x∀y P (x, y)

∀y ∀xP (x, y)

P (x, y) is true for every

pair x, y.

There is a pair x, y

for which P (x, y) is false.

∀x∃y P (x, y) For every x there is a y

for which P (x, y) is true.

There is an x for which

P (x, y) is false for all y.

∃x∀y P (x, y) There is an x for which

P (x, y) is true for all y.

For every x there is a y

for which P (x, y) is false.

∃x∃y P (x, y)

∃y ∃xP (x, y)

There is a pair x, y

for which P (x, y) is true.

P (x, y) is false for every

pair x, y.
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Translating Nested Quantifiers

Example: Translate the following

• ∀x∀y ((x > 0) ∧ (y < 0)→ (xy < 0))

• ∀x∀y ((x + y < 0)→ (x < 0) ∨ (y < 0))
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Translating Nested Quantifiers

Example: Translate the following

• If two numbers are unequal, then one

of the numbers is less than the other.

• Every nonzero real number has a mul-

tiplicative inverse.
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Negating Nested Quantifiers

To negate a statement with nested quan-

tifiers we successively apply the rules for

negating statements involving a single quan-

tifier.

Example: Find the negation of

∀x∃y (xy = 1).
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Negating Nested Quantifiers

Example: Find the negation of

∀x∃y (xy = 1).

To illustrate the process, we’ll use the predicates

P (x, y) : xy = 1.

Q(x) : ∃y (xy = 1)

¬∀x∃y (xy = 1) ≡
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Rules of Inference

Arguments and Validity

A formal argument in propositional logic

is a sequence of propositions, starting with

a premise or set of premises, and ending

in a conclusion. We say that an argument

is valid if and only if the conclusion is true

when all premises are true.

61



Arguments and Validity

Example:

1. If I work, then I get paid.

2. If I get paid, then I pay the bills.

3. Therefore, if I work, then I pay the bills.

62



Argument Form

An argument form is a sequence of com-

pound propositions involving propositional

variables. An argument form is valid if

no matter which particular propositions are

substituted for the propositional variables

in its premises, the conclusion is true if the

premises are all true.

Example:

Argument Argument Form

1. If I work, then I get paid.

2. If I get paid, then I pay the bills.

3. Therefore, if I work, then I pay the bills.

1. p→ q

2. q → r

3. ∴ p→ r
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Rules of Inference

Modus Ponens (Law of Detachment)

Example Argument Form

1. If it snows today, then we will go skiing.

2. It is snowing today.

3. Therefore, we will go skiing.

p→ q

p

∴ q
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Rules of Inference

Modus Tollens

Example Argument Form

1. If it snows today, then we will go skiing.

2. We will not go skiing.

3. Therefore, it is not snowing today.

p→ q

¬q

∴ ¬p
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Rules of Inference

Hypothetical Syllogism

Example Argument Form

1. If I work, then I get paid.

2. If I get paid, then I pay the bills.

3. Therefore, if I work, then I pay the bills.

p→ q

q → r

∴ p→ r
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Rules of Inference

Disjunctive syllogism

Example Argument Form

1. It is sunny, or it is cloudy

2. It is not sunny.

3. Therefore, it is cloudy.

p ∨ q

¬p

∴ q
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Rules of Inference

Addition

Example Argument Form

1. It is sunny.

2. Therefore, it is sunny, or it is cloudy.

p

∴ p ∨ q
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Rules of Inference

Simplification

Example Argument Form

1. It is cloudy, and it is raining.

2. Therefore, it is cloudy.

p ∧ q

∴ p
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Rules of Inference

Conjunction

Example Argument Form

1. It is cloudy.

2. It is raining.

3. Therefore, it is cloudy, and it is raining.

p

q

∴ p ∧ q
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Rules of Inference

Resolution

Example Argument Form

1. It’s a weekday, or the kids are off of school.

2. It’s not a weekday, or Jim is working.

3. Therefore, the kids are off of school, or

Jim is working.

p ∨ q

¬p ∨ r

∴ q ∨ r
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Rules of Inference

Rule of

Inference

Tautology Name

p

p→ q

∴ q

(p ∧ (p→ q))→ q Modus ponens

¬q
p→ q

∴ ¬p

(¬q ∧ (p→ q))→ ¬p Modus tollens

p→ q

q → r

∴ p→ r

((p→ q) ∧ (q → r))→ (p→ r) Hypothetical

syllogism

p ∨ q

¬p
∴ q

((p ∨ q) ∧ ¬p)→ q Disjunctive

syllogism
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Rules of Inference

Rule of

Inference

Tautology Name

p

∴ p ∨ q

p→ (p ∨ q) Addition

p ∧ q

∴ p

(p ∧ q)→ p Simplification

p

q

∴ p ∧ q

(p ∧ q)→ (p ∧ q) Conjunction

p ∨ q

¬p ∨ r

∴ q ∨ r

((p ∨ q) ∧ (¬p ∨ r)→ (q ∨ r) Resolution
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Rules of Inference

Examples: In each case identify the rule

of inference used.

• If it is cloudy, then it’s raining. It’s not

raining. Therefore, it’s not cloudy.

• If it rains today, then we will not have

a barbecue today. If we do not have a

barbecue today, then we will have a bar-

becue tomorrow. Therefore, if it rains

today, then we will have a barbecue to-

morrow.
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Rules of Inference

Examples: In each case identify the rule

of inference used.

• It is below freezing now. Therefore, it

is either below freezing or raining now.

• It is below freezing and raining now.

Therefore, it is below freezing now.

• Jasmine is skiing, or it is not snow-

ing. It is snowing, or Bart is playing

hockey. Jasmine is skiing, or Bart is

playing hockey.
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Rules of Inference

Examples:

• If you do every problem in this book,

then you will learn discrete mathemat-

ics. You learned discrete mathematics.

Therefore, you did every problem in this

book.

• If you do every problem in this book,

then you will learn discrete mathemat-

ics. You did not do every problem in

this book. Therefore, you did not learn

discrete mathematics.
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Common Fallacies

Fallacy Name

p→ q

q

∴ p

Affirming the conclusion

p→ q

¬p
∴ ¬q

Denying the hypothesis
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Constructing Arguments

Example: For the given set of premises,

what conclusion can be drawn?

1. It is not sunny today, and it is colder

than yesterday.

2. We will go swimming only if it is sunny.

3. If we do not go swimming, then we will

take a canoe trip.

4. If we take a canoe trip, then we will be

home by sunset.

Conclusion:
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Constructing Arguments

Premises

1. It is not sunny today, and it is colder than yesterday. (¬p ∧ q)

2. We will go swimming only if it is sunny. (r → p)

3. If we do not go swimming, then we will take a canoe trip. (¬r → s)

4. If we take a canoe trip, then we will be home by sunset. (s→ t)

Conclusion

We will be home by sunset. (t)

Argument

Statement Reason

1. ¬p ∧ q

2. ¬p
3. r → p

4. ¬r
5. ¬r → s

6. s

7. s→ t

8. t

Premise

Simplification (1)

Premise

Modus tollens (2 and 3)

Premise

Modus ponens (4 and 5)

Premise

Modus ponens (6 and 7)
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Constructing Arguments

Premises

1. If you send me an e-mail, then I will finish the project. (p→ q)

2. If you do not send me an e-mail, then I will go home. (¬p→ r)

3. If I go home, then I will go to sleep early. (r → s)

Conclusion

If I do not finish the project, then I will go to sleep early. (¬q → s)

Argument

Statement Reason

1. p→ q

2. ¬q → ¬p
3. ¬p→ r

4. ¬q → r

5. r → s

6. ¬q → s

Premise

Contrapositive (1)

Premise

Hypothetical syllogism (2 and 3)

Premise

Hypothetical syllogism (4 and 5)
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Rules of Inference and Quantifiers

Rule of Inference Name

∀xP (x)

∴ P (c) for an arbitrary c

Universal instantiation

P (c) for an arbitrary c

∴ ∀xP (x)

Universal generalization

∃xP (x)

∴ P (c) for some element c

Existential instantiation

P (c) for some element c

∴ ∃xP (x)

Existential generalization



Rules of Inference and Quantifiers

Premises

1. Everyone taking discrete math has taken calculus. (∀x(D(x)→ C(x)))

2. Marla is taking discrete math class. (D(Marla))

Conclusion

Marla has taken calculus. (C(Marla))

Argument

Statement Reason

1. ∀x(D(x)→ C(x))

2. D(Marla)→ C(Marla)

3. D(Marla)

4. C(Marla)

Premise

Universal instantiation (1)

Premise

Modus ponens (2 and 3)



Rules of Inference and Quantifiers

Premises

1. A student in this class has not read the book. (∃x(C(x) ∧ ¬B(x)))

2. Everyone in this class passed the first exam. (∀x(C(x)→ P (x)))

Conclusion

Someone who passed the first exam has not read the book.

(∃x(P (x) ∧ ¬B(x)))

Argument

Statement Reason

1. ∃x(C(x) ∧ ¬B(x))

2. C(a) ∧ ¬B(a)

3. C(a)

4. ∀x(C(x)→ P (x))

5. C(a)→ P (a)

6. P (a)

7. ¬B(a)

8. P (a) ∧ ¬B(a)

9. ∃x(P (x) ∧ ¬B(x))

Premise

Existential instantiation (1)

Simplification (2)

Premise

Universal instantiation (4)

Modus ponens (3 and 5)

Simplification (2)

Conjunction (6 and 7)

Existential generalization (8)



Introduction to Proofs

Mathematical Proofs

The rules of inference for formal proofs in

propositional logic are the same as those

used in mathematical proofs. However,

in the latter case we allow for greater flex-

ibility in the presentation of the argument.

A mathematical proof often relies on many

premises corresponding to the axioms of

our mathematical system. For this reason,

certain steps of the argument may be com-

bined or assumed implicity for the sake of

readability.
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Types of Mathematical Statements

Axioms (or postulates) are basic mathe-

matical statements that are assumed to be

true.

The conclusion of a mathematical argu-

ment is called a theorem, proposition,

lemma, or corollary depending on the rel-

ative importance of the statement. In par-

ticular, each represents a true mathemati-

cal statement supported by a proof.

A conjecture is mathematical statement

which is believed to be true, but is un-

proven.
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Integers and Parity

Definitions

We say that a number n is an integer if it

belongs to the set

Z = {. . . ,−3,−2,−1,0,1,2,3, . . .}

We say that an integer n is odd if there

exists an integer k such that n = 2k + 1.

We say that an integer n is even if there

exists an integer k such that n = 2k.
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Theorem Forms

Many mathematical theorems have the form

of a conditional or biconditional statement.

Examples:

1. If x > y > 0, then x2 > y2.

2. If x, y ∈ Q, then xy ∈ Q.

3. If n is an integer and 3n+2 is odd, then

n is odd.

4. An integer n is odd if and only if n2 is

odd.
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Theorem Forms

Not all theorems have the form of a condi-

tional statement. Identify the form of each

of the following theorems.

Examples:

1. There are no perfect squares of the form

4k + 3, where k is an integer.

2. For any real number x there exists a

positive integer n, such that x ≤ n.

3.
√

2 is an irrational number.

4. There are an infinite number of prime

numbers.
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Proof of a Conditional Statement (p→ q)

Methods

1. Direct Proof

2. Proof By Contraposition

3. Proof By Contradiction
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Direct proof of p→ q

Strategy

Assume p is true, then use rules of inference

to deduce q is true.
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Direct Proof of p→ q

Theorem: If n is an odd integer, then

7n + 4 is odd.

Proof:



Direct proof of p→ q

Theorem: If x > y > 0, then x2 > y2.

Proof:
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Direct proof of p→ q

Theorem: If x, y ∈ Q, then xy ∈ Q.

Proof:
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Direct proof of p→ q

Theorem: If n is an integer and 3n+ 2 is

odd, then n is odd.

Proof:
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Contraposition Proof of p→ q

Strategy

Assume ¬q is true, then use rules of infer-

ence to deduce ¬p is true.

What this shows...

This proves the contrapositive ¬q → ¬p,

which is logically equivalent to p→ q.
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Contraposition Proof of p→ q

Theorem: If n is an integer and 3n+ 2 is

odd, then n is odd.

Proof:
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Contradiction Proof of p→ q

Strategy

Assume p ∧ ¬q is true, then use rules of

inference to deduce a false statement (a

contradiction).

What this shows...

The fact that a valid argument produced

a false statement means that the premise

p ∧ ¬q is false. Hence, ¬(p ∧ ¬q), which is

equivalent to p→ q, is true.
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Contradiction Proof of p→ q

Theorem: If n is an integer and 3n+ 2 is

odd, then n is odd.

Proof:
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Proof of a Biconditional Statement (p↔ q)

Strategy

Prove that both p → q and its converse,

q → p, are true. That is, (Step 1) assume

p and deduce q, then (Step 2) assume q

and deduce p.

Special Case (Reversible proof)

If q can be deduced from p using only infer-

ences of the form “iff”, then the argument

is called reversible and only one step is re-

quired to complete the proof.
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Proof of a Biconditional Statement (p↔ q)

Theorem: An integer n is odd if and only

if n2 is odd.

Proof:
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Proof of a Biconditional Statement (p↔ q)

Theorem: x2 − 2x + 1 = 0 if and only if

x = 1.

Proof:
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Contraposition Proof of p→ q

Theorem: If x2− 2x− 3 > 0, then x < −1

or x > 3.

Proof:



Proof by Cases

Theorem: n2−3n is even for all integers n.

Proof:



Proof by Contradiction (General Case)

Strategy

To prove a theorem of the form p by con-

tradiction, we assume ¬p, then use rules of

inference to deduce a false statement (a

contradiction).

What this shows...

The fact that a valid argument produced a

false statement means that the premise ¬p
is false. Hence, ¬(¬p), which is equivalent

to p, is true.
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Proof by Contradiction (General Case)

Theorem: There are no perfect squares

of the form 4k + 3, where k is an integer.

Proof:
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Proof by Contradiction (General Case)

Theorem: For any real number x there

exists a positive integer n, such that x ≤ n.

Proof:
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Proof by Contradiction (General Case)

Theorem:
√

2 is an irrational number.

Proof:
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Proof by Contradiction (General Case)

Theorem: There are an infinite number

of prime numbers.

Proof:
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Theorems of Equivalence

Some theorems state the equivalence of a

set of propositions {p1, p2, . . . , pn}.

Proof strategy

To prove pi ↔ pj for all i and j, we use an

n-step proof to establish a circular chain of

implications

Step 1: p1 → p2

Step 2: p2 → p3
...

Step n-1: pn−1 → pn

Step n: pn → p1
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Basic Concepts of Set Theory

Definition

A set is an unordered collection of objects,

called elements or members of the set. A

set is said to contain its elements. We write

a ∈ A to denote that a is an element of the

set A. The notation a /∈ A denotes that a

is not an element of the set A.
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Defining a Set

The roster method is a way of defining a

set by listing all of its members.

Examples

• The set of all vowels in the English al-

phabet is denoted by {a, e, i, o, u}.

• The set of odd positive integers is de-

noted by {1,3,5, . . .}.

• The set of positive integers less than

100 is denoted by {1,2,3, . . . ,99}.
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Important Sets

Notation

N = {1,2,3, . . .}, the set of natural numbers, also

denoted Z+.

Z = {. . . ,−2,−1,0,1,2, . . .}, the set of integers

Q, the set of rational numbers

R, the set of real numbers

R+, the set of positive real numbers

C, the set of complex numbers
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Defining a Set

Another way to describe a set is using set

builder notation which has the general form

S = {x ∈ U | P (x)},

where U is the universal set and P (x) is a

propositional function with domain U .

The set S consists of all elements in U such

that P (x) is true. This set is called the

truth set of P (x).
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Defining a Set

Examples

S = {1,3,5,7,9}

= {x ∈ N | x is odd and x < 10}

= {x | x is an odd positive integer less than 10}

Q = {x ∈ R | Q(x)}

where Q(x): ∃p ∃q (p ∈ N ∧ q ∈ Z ∧ x =
p

q
)

= {x ∈ R | x =
p

q
, where p ∈ N and q ∈ Z}
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Interval Notation

Recall the following notation for interval

subsets of R

(a, b) = {x ∈ R | a < x < b} open interval

[a, b] = {x ∈ R | a ≤ x ≤ b} closed interval

[a, b) = {x ∈ R | a ≤ x < b}
(a, b] = {x ∈ R | a < x ≤ b}

(−∞, b] = {x ∈ R | x ≤ b}
(−∞, b) = {x ∈ R | x < b}
[a,∞) = {x ∈ R | x ≥ a}
(a,∞) = {x ∈ R | x > a}
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Defining a Set

Example: Express the following set using

set builder notation.

S = {. . . ,−12,−8,−4,0,4,8,12, . . .}
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The Empty Set

A set with no elements is called the empty

set, or null set, and is denoted by Ø.

For example,

{x ∈ R | x2 = −1} = Ø.

8



Subsets

The set A is a subset of B if and only if

every element of A is also an element of B.

That is, A is a subset of B iff

∀x (x ∈ A → x ∈ B).

We use the notation A ⊆ B to indicate that

A is a subset of B.
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Subsets

To show A ⊆ B

Assume x ∈ A, then show x ∈ B.

To show A * B

Show there exists an x ∈ A such that x 6= B.
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Subsets

Example: Consider the sets A = {2,−3}
and B = {x ∈ R | x3 + 3x2 − 4x − 12 = 0}.
Prove that A ⊆ B.

Proof:
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Special Subsets

Theorem: For every set S,

(i) Ø ⊆ S

(ii) S ⊆ S

Proof of (i): By definition, Ø ⊆ S iff

∀x (x ∈ Ø→ x ∈ S).

Since the premise x ∈ Ø is false for all x,

the conditional statement is true for all x.

This completes the proof of part (i).

Proof of (ii): By definition, S ⊆ S iff

∀x (x ∈ S → x ∈ S).

Since the propositional form p→ p is a tau-

tology, the conditional statement is true for

all x. This completes the proof of part (ii).



Proper Subsets

We say that A is a proper subset of B if

and only if A ⊆ B and A 6= B. That is, A

is a proper subset of B iff

∀x (x ∈ A → x ∈ B) ∧ ∃x (x ∈ B ∧ x /∈ A).

We use the notation A ( B to indicate that

A is a proper subset of B.
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Equality of Sets

Two sets are equal if and only if they have

the same elements. Therefore, if A and B

are sets, then A = B if and only if

∀x (x ∈ A ↔ x ∈ B).

That is, A = B iff A ⊆ B and B ⊆ A.
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Equality of Sets

To show A = B

Step 1. Assume x ∈ A, then show x ∈ B.

Step 2. Assume x ∈ B, then show x ∈ A.
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Equality of Sets

Example: Consider the sets A = {−1,1}
and B = {x ∈ R | x2 = 1}. Prove that

A = B.

Proof:
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Equality of Sets

Remark

The sets {1,2,3} and {2,3,1} are equal,

because they have the same elements. Note

that the order in which the elements of a

set are listed does not matter.
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Equality of Sets

Theorem: If A and B are sets with no

elements, then A = B.

Proof: By definition, A = B iff

∀x (x ∈ A↔ x ∈ B).

Since the sets A and B have no elements,

the statements x ∈ A and x ∈ B are false

for all x. Therefore, the biconditional state-

ment x ∈ A↔ x ∈ B is true for all x. This

completes the proof.



Power Sets

Let S be a set. The power set of S, de-

noted P(S), is the set of all subsets of S.

That is,

P(S) = {T | T ⊆ S}.

Example: Let S = {a, b, c}. Then, P(S) =

{Ø, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}

Note that the empty set Ø and the set S

itself are each members of P(S).
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Power Sets

Examples: Find the power set of each of

the following sets.

• S = {1,2}

• S = Ø

• S = P(Ø)
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Power Sets

Theorem: If S is a set with n elements,

then the power set P(S) is a set with 2n

elements.

Proof:

Let S = {s1, s2, s3, . . . , sn}. To construct a

subset T of S, we need to decide whether

or not si ∈ T for each i = 1,2, . . . , n. That

is, for each i = 1,2, . . . , n, there are two

possibilities, si ∈ T or si /∈ T , so there are

2 · 2 · 2 · · · · · 2︸ ︷︷ ︸
n factors

= 2n

different ways of constructing a subset of

S. Therefore P(S) has 2n elements.
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Set Operations

Union of Sets

Let A and B be sets. The union of the sets

A and B, denoted by A∪B, is the set that

contains those elements that are either in

A or in B, or in both. That is,

A ∪B = {x | x ∈ A ∨ x ∈ B}

1



Union of Sets

Venn Diagram

2



Intersection of Sets

Let A and B be sets. The intersection

of the sets A and B, denoted by A ∩ B, is

the set containing those elements in both

A and B. That is,

A ∩B = {x | x ∈ A ∧ x ∈ B}
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Intersection of Sets

Venn Diagram
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Union and Intersection

Example

Let A = {1,2,3} and B = {1,3,5}. Then,

A ∪B = {1,2,3,5}
A ∩B = {1,3}
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Disjoint Sets

Two sets are called disjoint if their inter-

section is the empty set.

Example

Let A = {1,3,5,7,9} and B = {2,4,6,8,10}.

A ∩B = ∅, therefore A and B are disjoint.
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Difference of Sets

Let A and B be sets. The difference of A

and B, denoted by A−B (or A \B), is the

set containing those elements that are in A

but not in B. That is,

A−B = {x | x ∈ A ∧ x /∈ B}

The difference of A and B is also called the

complement of B with respect to A.
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Difference of Sets

Venn Diagram
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Complement of a Set

Let U be the universal set. The comple-

ment of the set A, denoted by Ac, is the

complement of A with respect to U . That

is

Ac = U −A = {x | x ∈ U ∧ x /∈ A}
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Complement of a Set

Venn Diagram
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Complement of a Set

Example

Let U be the set of letters in the English

alphabet, and let V = {a, e, i, o, u}. Then,

V c = U − V

= {b, c, d, f, g, h, j, k, l,m, n, p, q, r, s, t, v, w, x, y, z}.
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Set Operations

Example

Consider the universal set

U = {0,1,2,3,4,5,6,7,8,9}.

If A = {1,2,4,5,7} and B = {1,3,5,9}, de-

termine the following:

A ∩B =

A ∪B =

A−B =

B −A =

Ac =

Bc =
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Set Identities

Identity Name

A ∩ U = A

A ∪ ∅ = A

Identity Laws

A ∪ U = U

A ∩ ∅ = ∅

Domination Laws

A ∪A = A

A ∩A = A

Idempotent Laws

(Ac)c = A Double Complement Law

A ∪Ac = U

A ∩Ac = ∅

Complement Laws
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Set Identities

Identity Name

A ∪B = B ∪A

A ∩B = B ∩A

Commutative Laws

A ∪ (B ∪ C) = (A ∪B) ∪ C

A ∩ (B ∩ C) = (A ∩B) ∩ C

Associative Laws

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

Distributive Laws

(A ∩B)c = Ac ∪Bc

(A ∪B)c = Ac ∩Bc

De Morgan’s Law

A ∪ (A ∩B) = A

A ∩ (A ∪B) = A

Absorption Laws
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Set Identities

Example: Prove the distributive law

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

Proof:
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Set Identities

Example: Prove that (A ∩B)c = Ac ∪Bc

Proof:

16



Set Identities

Example: Use set identities to show that

(A ∪ (B ∩ C))c = (Cc ∪Bc) ∩Ac
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Sets and Proofs

Example: Prove that A ∩B ⊆ A.

Proof:
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Sets and Proofs

Example: Prove that A ⊆ B iff A∩B = A.

Proof:

19





Sets and Proofs

Example: Prove that A ∩ (B −A) = Ø.

Proof:
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Ordered n-tuples

An ordered n-tuple (a1, a2, . . . , an) is an

ordered collection that has a1 as its first

element, a2 as its second element, . . . , and

an as its nth element.

Ordered 2-tuples are called ordered pairs.
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Ordered n-tuples

We say that two ordered n-tuples are equal

if and only if each corresponding pair of

their elements is equal. In other words,

(a1, a2, . . . , an) = (b1, b2, . . . , bn)

if and only if

ai = bi, for i = 1,2, . . . , n
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Cartesian Product

Let A and B be sets. The Cartesian prod-

uct of A and B, denoted by A × B, is the

set of all ordered pairs (a, b), where a ∈ A
and b ∈ B. Hence,

A×B = {(a, b) | a ∈ A and b ∈ B}.
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Cartesian Product

Example:

If A = {1,2} and B = {a, b, c}, then

A×B = {(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)}.

B×A = {(a,1), (a,2), (b,1), (b,2), (c,1), (c,2)}.

Note that A×B 6= B ×A, unless A = B.
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Cartesian Product

The Cartesian product of the sets A1, A2, . . . , An,

denoted by A1×A2× · · · ×An, is the set of

ordered n-tuples (a1, a2, . . . , an), where ai

belongs to Ai for i = 1,2, . . . , n. In other

words,

A1×A2×· · ·×An = {(a1, a2, . . . , an) | ai ∈ Ai for i = 1,2, . . . , n}
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Cartesian Product

Example:

If A = {1,2}, B = {a, b, c}, and C = {α, β},
then

A×B × C = {(1, a, α), (1, a, β), (1, b, α), (1, b, β),

(1, c, α), (1, c, β), (2, a, α), (2, a, β),

(2, b, α), (2, b, β), (2, c, α), (2, c, β)}
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Cartesian Product

Notation

If A is a set, then An denotes the Cartesian

product of n copies of A. That is,

An = A×A× · · · ×A︸ ︷︷ ︸
n times
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Extended Set Operations and

Indexed Families of Sets

Set of Sets

A set of sets is often called a family or

a collection of sets. We often use script

letters, A, B, C, . . . , to denote families of

sets. For example,

A = {Ø, {a}, {b}, {a, b}}

B = {{1}, {1,2}, {1,2,3}, . . .}

= {{1,2, . . . n} | n ∈ N}

= {Bn | n ∈ N}

C = {(−ε, ε) | ε > 0}

= {Cε | ε ∈ R+}
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Union of Sets

Let A be a family of sets. The union over

A, denoted
⋃
A∈A

A, is the set of elements

contained in at least one set in the family

A. That is,

⋃
A∈A

A = {x | x ∈ A for some A ∈ A}
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Union of Sets

For a finite collection of sets A1, A2, . . . , An,

we use the notation

A1 ∪A2 ∪ · · · ∪An =
n⋃
i=1

Ai

For a collection of sets {Ai}∞i=1, we write

A1 ∪A2 ∪A3 ∪ · · · =
∞⋃
i=1

Ai
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Union of Sets

Examples

1. A = {Ø, {a}, {b}, {a, b}} = {A1, A2, A3, A4}

⋃
A∈A

A =
4⋃
i=1

Ai = A1 ∪A2 ∪A3 ∪A4 = {a, b}

2. B = {{1}, {1,2}, {1,2,3}, . . .} = {B1, B2, B3, . . .}⋃
B∈B

B =
∞⋃
i=1

Bi = B1 ∪B2 ∪B3 ∪ . . . = N

3. C = {(−ε, ε) | ε > 0} = {Cε | ε ∈ R+}⋃
C∈C

C =
⋃
ε∈R+

Cε = R
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Intersection of Sets

Let A be a family of sets. The intersec-

tion over A, denoted
⋂
A∈A

A, is the set of

elements contained in every set in the fam-

ily A. That is,

⋂
A∈A

A = {x | x ∈ A for every A ∈ A}
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Intersection of Sets

For a finite collection of sets A1, A2, . . . , An,

we use the notation

A1 ∩A2 ∩ · · · ∩An =
n⋂
i=1

Ai

For a collection of sets {Ai}∞i=1, we write

A1 ∩A2 ∩A3 ∩ · · · =
∞⋂
i=1

Ai
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Intersection of Sets

Examples

1. A = {Ø, {a}, {b}, {a, b}} = {A1, A2, A3, A4}

⋂
A∈A

A =
4⋂
i=1

Ai = A1 ∩A2 ∩A3 ∩A4 = Ø

2. B = {{1}, {1,2}, {1,2,3}, . . .} = {B1, B2, B3, . . .}⋂
B∈B

B =
∞⋂
i=1

Bi = B1 ∩B2 ∩B3 ∩ . . . = {1}

3. C = {(−ε, ε) | ε > 0} = {Cε | ε ∈ R+}⋂
C∈C

C =
⋂
ε∈R+

Cε = {0}
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Indexed Family of Sets

Let ∆ be a nonempty set such that for each

α ∈∆ there is a corresponding set Aα. The

family

{Aα | α ∈∆}

is an indexed family of sets. The set ∆

is called the indexing set and each α ∈ ∆

is an index.

10



Indexed Family of Sets

Examples

1. A = {Ø, {a}, {b}, {a, b}}

= {A1, A2, A3, A4}

= {An | n ∈ {1,2,3,4}}

2. B = {{1}, {1,2}, {1,2,3}, . . .}

= {B1, B2, B3, . . .}

= {Bn | n ∈ N}

3. C = {(−ε, ε) | ε > 0}

= {Cε | ε ∈ R+}

11



Indexed Family of Sets

Example Let ∆ = {0,1,2,3,4}, and let

Aα = {2α+ 4, 8, 12− 2α}

for each α ∈∆. Determine the following

1. A0 = {4,8,12}

2. A1 = {6,8,10}

3. A2 = {8}

4. A3 = {6,8,10}

5. A4 = {4,8,12}

6. A = {Aα | α ∈∆} = {{4,8,12}, {6,8,10}, {8}}

13



Indexed Family of Sets

Notation Let A = {Aα | α ∈∆}, then we

express the union and intersection over A
as follows ⋃

A∈A
A =

⋃
α∈∆

Aα

⋂
A∈A

A =
⋂
α∈∆

Aα

14



Indexed Family of Sets

Example Let ∆ = Z, and let

Aα = (α, α+ 1)

for each α ∈∆. Determine the following:

1.
⋃

α∈∆
Aα =

2.
⋂

α∈∆
Aα =

15



Indexed Family of Sets

Example Let ∆ = R+, and let

Aα = (−∞,−α) ∪ (α,∞)

for each α ∈∆. Determine the following:

1.
⋃

α∈∆
Aα =

2.
⋂

α∈∆
Aα =

16



De Morgan’s Law

Theorem Let A = {Aα | α ∈ ∆} be an

indexed collection of sets. Then,

1.

( ⋃
α∈∆

Aα

)c
=

⋂
α∈∆

Ac
α

2.

( ⋂
α∈∆

Aα

)c
=

⋃
α∈∆

Ac
α

17



Proof of (1):

x ∈

 ⋃
α∈∆

Aα

c

iff x /∈
⋃
α∈∆

Aα

iff it’s not the case that x ∈
⋃
α∈∆

Aα

iff it’s not the case that x ∈ Aα

for some α ∈∆

iff x /∈ Aα for every α ∈∆

iff x ∈ Ac
α for every α ∈∆

iff x ∈
⋂
α∈∆

Ac
α



Indexed Family of Sets

Example Let ∆ = R+, and let

Aα = (−∞,−α) ∪ (α,∞)

for each α ∈∆.

Verify Part 1 of De Morgan’s Law:

1.

( ⋃
α∈∆

Aα

)c
=

( ⋃
α∈∆

(−∞,−α) ∪ (α,∞)

)c

= ((−∞,0) ∪ (0,∞))c

= {0}

2.
⋂

α∈∆
Ac
α =

⋂
α∈∆

((−∞,−α) ∪ (α,∞))c

=
⋂

α∈∆
[−α, α]

= {0}

19



Pairwise Disjoint Sets

The sets in an indexed family

A = {Aα | α ∈∆}

are called pairwise disjoint if and only if

∀α ∀β [(Aα = Aβ) ∨ (Aα ∩Aβ = Ø)]

20



Pairwise Disjoint Sets

Example Let ∆ = Z, and let

Aα = (α, α+ 1)

for each α ∈∆.

The sets in A = {Aα | α ∈ ∆} are pairwise

disjoint since Aα ∩Aβ = Ø for all α 6= β.

21



Mathematical Induction

Peano Axioms

The set of natural numbers N = {1,2,3, . . .}
has an implicit ordering, namely

1 < 2 < 3 < 4 < 5 < 6 < 7 < · · ·

We say that n + 1 is the successor of n.

For example, 2 is the successor of 1, 3 is

the successor of 2, and so on.

In terms of this notion of successor of an

element, one can give a axiomatic descrip-

tion of the natural numbers from which the

basic laws of arithmetic can be developed.

These axioms are called Peano Axioms.



Peano Axioms

The structure of the natural numbers as an

ordered set is characterized by the follow-

ing five axioms:

(i) 1 is a natural number.

(ii) Every natural number has a unique successor,

which is a natural number.

(iii) No two natural numbers have the same suc-

cessor.

(iv) 1 is not the successor of any natural number.

(v) If a subset of the natural numbers contains

the element 1 and contains the successors of

all of its elements, then that subset contains

all natural numbers.



Induction Axiom

Axiom (v) above is called the induction

axiom and can be reformulated as follows:

If S ⊆ Z+ such that

(i) 1 ∈ S,

(ii) ∀k (k ∈ S → k + 1 ∈ S),

then S = Z+.



Induction as a Rule of Inference

In the context of mathematical proofs, the

induction axiom serves as a rule of infer-

ence of the form

P (1)

∀k (P (k) → P (k + 1))

∴ ∀n (P (n))

where P is any propositional function with

domain Z+.

2



Mathematical Induction

Let P (n) is a propositional function with

domain Z+. To prove that P (n) is true

for all positive integers n, we complete two

steps:

1. (Base Case) Verify that P (1) is true.

2. (Inductive Step) Prove the conditional

statement P (k) → P (k + 1) is true for

all positive integers k.

To complete the inductive step, we assume

P (k) is true (this assumption is called the

induction hypothesis), then show P (k+1)

must also be true.

3



Mathematical Induction

Example: Show that if n is a positive

integer, then

1 + 2 + 3 + · · ·n =
n(n + 1)

2

4



Mathematical Induction

Proof: Let P (n) be the proposition

1 + 2 + 3 + · · ·n =
n(n + 1)

2
.

We want to show P (n) is true for all n ≥ 1.

Base Step:

5





Mathematical Induction

Example: Conjecture a formula for the

sum of the first n positive odd integers.

Then prove your conjecture using mathe-

matical induction.

1 =

1 + 3 =

1 + 3 + 5 =

1 + 3 + 5 + 7 =

1 + 3 + 5 + 7 + 9 =

6



Mathematical Induction

Conjecture: For all positive integers n,

the following proposition P (n) holds

1 + 3 + 5 + · · ·+ 2n− 1 =

Proof:

7





Mathematical Induction

Example: Use mathematical induction to

prove the inequality

n < 2n

for all positive integers n.

8



Mathematical Induction

Proof: Let P (n) be the proposition n < 2n.

We want to show P (n) is true for all n ≥ 1.

Base Step:

9



Mathematical Induction

Example: Use mathematical induction to

prove n3 − n is divisible by 3 for all n ≥ 1.

10



Mathematical Induction

Proof: Let P (n) be the proposition

3 | (n3 − n).

We want to show P (n) is true for all n ≥ 1.

Base Step:

11





Generalized Induction

To prove that the propositional function

P (n) is true for all integers n ≥ b , we com-

plete two steps:

1. (Base Case) Verify that P (b) is true.

2. (Inductive Step) Prove the conditional

statement P (k) → P (k + 1) is true for

all positive integers k ≥ b.



Generalized Induction

Example: Use generalized induction to

show that for all nonnegative integers n

1 + 2 + 22 + · · ·+ 2n = 2n+1 − 1



Generalized Induction

Proof: Let P (n) be the proposition

1 + 2 + 22 + · · ·+ 2n = 2n+1 − 1.

We want to show P (n) is true for all inte-

gers n ≥ 0.





Generalized Induction

Example: Use generalized induction to

prove that the sum of the first n+ 1 terms

in a geometric progression with initial term

a and common ratio r 6= 1 is given by

a + ar + ar2 + · · ·+ arn =
arn+1 − a

r − 1



Generalized Induction

Proof: Let P (n) be the proposition

a + ar + ar2 + · · ·+ arn =
arn+1 − a

r − 1

We want to show P (n) is true for all inte-

gers n ≥ 0.





Generalized Induction

Example: Use generalized induction to

prove the inequality

2n < n!

for all integers n ≥ 4.



Generalized Induction

Proof: Let P (n) be the proposition

2n < n!.

We want to prove that P (n) is true for all

integers n ≥ 4.





Generalized Induction

Example: Use mathematical induction to

prove that 7n+2 + 82n+1 is divisible by 57

for all n ≥ 0.



Generalized Induction

Proof: Let P (n) be the proposition

∃m (m ∈ Z ∧ 7n+2 + 82n+1 = 57m).

We want to show P (n) is true for all n ≥ 0.





Generalized Induction

Generalized De Morgan’s Law

Let A1, A2, . . . , An be subsets of a univer-

sal set U , and let P (n) be the proposition n⋂
j=1

Aj

c

=
n⋃

j=1

Ac
j

Prove P (n) is true for all n ≥ 2.

Proof:

Base Step: The statement P (2) asserts

(A1 ∩A2)c = (A1)c ∪ (A2)c, which is true

by De Morgan’s Law.

Inductive Step: Assume P (k) is true for

some fixed integer k ≥ 2. That is, assume k⋂
j=1

Aj

c

=
k⋃

j=1

Ac
j



for any collection of k sets A1, A2, . . . , Ak.

Then,k+1⋂
j=1

Aj

c

=

 k⋂
j=1

Aj

 ∩Ak+1

c

=

 k⋂
j=1

Aj

c

∪Ac
k+1

=

 k⋃
j=1

Ac
j

 ∪Ac
k+1

=
k+1⋃
j=1

Ac
j

This completes the inductive step.

Therefore, P (n) is true for all n ≥ 2.



Complete Induction and the Well-

Ordering Principle

Complete Induction as a Rule of Infer-

ence

In mathematical proofs, complete induc-

tion (PCI) is a rule of inference of the form

P (a) ∧ P (a + 1) ∧ · · · ∧ P (b)

∀k≥b ([P (a) ∧ P (a + 1) ∧ · · · ∧ P (k)] → P (k + 1))

∴ ∀n≥a (P (n))

where a and b are positive integers with

a ≤ b, and P is any propositional function

with domain n ≥ a.



Complete Induction

To prove that a propositional function P (n)

is true for all positive integers n ≥ a, we

complete two steps:

1. (Base Case) Verify the truth of

P (a) ∧ P (a + 1) ∧ · · · ∧ P (b)

2. (Inductive Step) Prove the conditional

statement

[P (a) ∧ P (a + 1) ∧ · · · ∧ P (k)] → P (k + 1)

is true for all positive integers k ≥ b.

To complete the inductive step, we assume

P (m) is true for all m = a, a+1, a+2, . . . , k,

then show P (k + 1) must also be true for

all k ≥ b.



Complete Induction

Special Case: a = b = 1

To prove that a propositional function P (n)

is true for all positive integers n, we com-

plete two steps:

1. (Base Case) Verify that P (1) is true.

2. (Inductive Step) Prove the conditional

statement

[P (1) ∧ P (2) ∧ P (3) ∧ · · · ∧ P (k)] → P (k + 1)

is true for all positive integers k.



Complete Induction

Special Case: a = b = 1

Example: Prove that every positive inte-

ger n has a binary expansion of the form

n = a0 + a12 + a222 + · · ·+ aj2
j,

where j is a nonnegative integer, aj = 1,

and ai ∈ {0,1} for all i.



Complete Induction

Proof: Let P (n) be the proposition:

n = a0 + a12 + a222 + · · ·+ aj2
j,

where j is a nonnegative integer, aj = 1,

and ai ∈ {0,1} for all i.

We want to show P (n) is true for all n ≥ 1.

Base Step: P (1) is true, since

1 = a020

where j = 0 and a0 = 1.

Inductive Step: Assume P (m) is true for

all positive integers m ≤ k.

Then, consider the integer k + 1. We have

two cases:



Case 1: (k+1 is even)

If k + 1 is even, then k + 1 = 2m where

m ≤ k. Therefore, P (m) is true and we

have

k + 1 = 2m

= 2(a0 + a12 + a222 + · · ·+ aj2
j)

= 0 + a02 + a122 + a223 + · · ·+ aj2
j+1

= â0 + â12 + â222 + â323 + · · ·+ âj+12j+1

where âj+1 = aj = 1, â0 = 0, and âi =

ai−1 ∈ {0,1} for all 1 ≤ i ≤ j. Therefore,

P (k + 1) is true in this case.

Case 2: (k+1 is odd)

If k + 1 is odd, then k = 2m where m < k.



Therefore, P (m) is true and we have

k + 1 = 1 + 2m

= 1 + 2(a0 + a12 + a222 + · · ·+ aj2
j)

= 1 + a02 + a122 + a223 + · · ·+ aj2
j+1

= â0 + â12 + â222 + â323 + · · ·+ âj+12j+1

where âj+1 = aj = 1, â0 = 1, and âi =

ai−1 ∈ {0,1} for all 1 ≤ i ≤ j.

Therefore, P (k + 1) is true in either case.

This completes the inductive step.

Therefore, it follows by complete induction

that P (n) is true for all n ≥ 1.



Complete Induction

Example: Prove that every positive inte-

ger n ≥ 2 can be expressed as a product of

prime numbers.



Complete Induction

Proof: Let P (n) be the proposition:

n = p1 p2 · · · pj,

where j ≥ 1 and pi is prime for all j.

We want to show P (n) is true for all n ≥ 2.

We will use complete induction correspond-

ing to the case a = b = 2.

Base Step: P (2) is true, since

2 = p1

is a prime number.

Inductive Step: Assume P (m) is true for

all integers m = a, a + 1, . . . , k. That is,

assume all integers m = 2,3, . . . , k have a

prime factorization.



Then, for k ≥ b = 2, we have two cases.

Case 1: (k+1 is prime)

If k+1 = p1 is prime, then P (k+1) is true.

Case 2: (k+1 is composite)

If k + 1 is composite, then there exist inte-

gers c and d with 1 < c ≤ d < k + 1, such

that

k + 1 = c · d

Then, 2 ≤ c ≤ k and 2 ≤ d ≤ k, and it

follows by the induction hypothesis that

c = p1 p2 · · · pj
d = q1 q2 · · · q`

where pi and qi are prime for all i. Thus,

k + 1 = (p1 p2 · · · pj) · (q1 q2 · · · q`)



and we conclude that P (k + 1) is true.

This completes the inductive step, and it

follows by complete induction that P (n) is

true for all n ≥ 2.



Well-Ordering Principle

Axiom: Every nonempty subset of Z+ has

a least element.

That is, if S ⊆ Z+ and S 6= ∅, then S has a

smallest element.



Well-Ordering Principle

Example: Use well-ordering property to

prove the division algorithm:

If a is an integer and d is a positive integer,

then there exist (unique) integers q and r

with 0 ≤ r < d such that a = dq + r.



Well-Ordering Principle

Proof: Consider the set

S = {n ∈ Z+ | n = a− dq +1 where q ∈ Z}

This set is nonempty because −dq can be

made as large as desired (by taking q <

0 with |q| sufficiently large). By the well-

ordering principle, S has a least element

n0 = (a− dq0) + 1 where q0 ∈ Z. We claim

n0 ≤ d. If not, then

n1 = (a− d(q0 + 1)) + 1 = n0 − d > 0,

which implies n1 ∈ S and n1 < n0. This

contradicts the assumption that n0 is the

least element of S. Therefore, 1 ≤ n0 ≤ d.

This proves a = dq0 + r where r = n0−1

is an integer such that 0 ≤ r < d.



The proof that q0 and r are unique is left

as an exercise.



Well-Ordering Principle

Theorem: The Well-Ordering Principle (WOP)

and the Principle of Mathematical Induc-

tion (PMI) are equivalent.



WOP → PMI

Proof: Assume WOP holds. We want to

prove PMI holds. Let S ⊆ Z+ such that

(i) 1 ∈ S,

(ii) k ∈ S → k + 1 ∈ S for all k ∈ Z+.

We want to prove S = Z+. Assume for the

sake of contradiction that S 6= Z+. Then,

T = Z+ − S is a non-empty subset of Z+.

Therefore, by the well-ordering principle, T

has a least element m. That is, there exists

m ∈ T such that m ≤ n for all n ∈ T .

Since 1 ∈ S, we know m ≥ 2. Therefore

m−1 is a positive integer. Clearly m−1 /∈ T

(otherwise m−1 would be the least element



of T ). This means m − 1 ∈ S, and by as-

sumption (ii)

(m− 1) ∈ S → (m− 1) + 1 ∈ S.

Therefore, m ∈ S which contradicts the

fact that m ∈ T .

We conclude that S = Z+. Therefore PMI

holds.



Relations

Binary Relation

Let A and B be sets. A (binary) relation

from A to B is a subset of A×B.

Notation

Let R ⊆ A×B be a relation from A to B.

If (a, b) ∈ R, we write aR b.

1



Binary Relation

Example: Consider the sets A = {2,3,5,7}
and B = {4,6,8,9,10}. Let R be the rela-

tion from A to B defined by

aR b iff b is divisible by a.

Then R consists of the ordered pairs

{(2,4), (2,6), (2,8), (2,10), (3,6), (3,9), (5,10)}.
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Domain and Range

The domain of a relation R from A to B

is the set

Dom(R) = {x ∈ A | ∃y (y ∈ B and xRy)}.

The range of the relation R from A to B

is the set

Rng(R) = {y ∈ B | ∃x (x ∈ A and xRy)}.
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Domain and Range

Example: Consider the sets A = {2,3,5,7}
and B = {4,6,8,9,10}. Let R be the rela-

tion from A to B defined by

aR b iff b is divisible by a.

Then R consists of the ordered pairs

{(2,4), (2,6), (2,8), (2,10), (3,6), (3,9), (5,10)}.



Domain and Range

Example: Consider the sets A = {2,3,5,7}
and B = {4,6,8,9,10}. Let R be the rela-

tion from A to B defined by

aR b iff b is divisible by a.

Then R consists of the ordered pairs

{(2,4), (2,6), (2,8), (2,10), (3,6), (3,9), (5,10)}.

Dom(R) = {2,3,5}

Rng(R) = {4,6,8,9,10}
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Domain and Range

Example: Let X = Y = R, and consider

the relation R from X to Y defined by

xR y iff
x2

16
+

y2

9
≤ 1.

That is, R =

{
(x, y) ∈ R× R

∣∣∣∣∣ x2

16
+

y2

9
≤ 1

}
.
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Domain and Range

Example: Let X = Y = R, and consider

the relation R from X to Y defined by

xR y iff
x2

16
+

y2

9
≤ 1.

That is, R =

{
(x, y) ∈ R× R

∣∣∣∣∣ x2

16
+

y2

9
≤ 1

}
.

Dom(R) = [−4,4]

Rng(R) = [−3,3]

6



Binary Relation on a Set

A (binary) relation on a set S is a relation

from the set S to S.
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Binary Relation on a Set

Examples: Let S = R. The following are

examples of binary relations on S.

R1 = {(x, y) | x = y},

R2 = {(x, y) | x < y},

R3 = {(x, y) | x ≤ y},

R4 = {(x, y) | x > y},

R5 = {(x, y) | x ≥ y},

R6 = {(x, y) | x = y or x = y},

R7 = {(x, y) | x = y + 1},

R8 = {(x, y) | x + y ≤ 3}.
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Identity Relation

The identity relation on S is the relation

from S to itself given by

IS = {(x, x) | x ∈ S}.

Example: Let S = {a, b, c}. The identity

relation on S is the relation

IS = {(a, a), (b, b), (c, c)}

9



Inverse Relation

If R is a relation from A to B, then the

inverse of R, denoted R−1, is the relation

R−1 = {(y, x) | (x, y) ∈ R}

Example: Consider the relation

R = {(2,4), (2,6), (2,8), (2,10), (3,6), (3,9), (5,10)}.

The inverse of R is the relation

R−1 = {(4,2), (6,2), (8,2), (10,2), (6,3), (9,3), (10,5)}.

10



Inverse Relation

Theorem: If R is a relation from A to B,

then

(a) Rng(R−1) = Dom(R).

(b) Dom(R−1) = Rng(R).

11



Proof:



Inverse Relation

Example

Let R be the relation on R given by

xR y iff y = ex.

The inverse of R is the relation given by

xR−1 y iff x = ey iff y = lnx.
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Inverse Relation

Example

Let R be the relation on R given by

xR y iff y = ex.

The inverse of R is the relation given by

xR−1 y iff x = ey iff y = lnx.

The previous theorem gives

Rng(R−1) = Dom(R) = (−∞,∞).

Dom(R−1) = Rng(R) = (0,∞).
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Composition of Relations

Let R be a relation from A to B, and let S

be a relation from B to C.

The composition of R and S, denoted S ◦R,

is a relation from A to C defined by

S ◦R = {(a, c) | ∃b ∈ B ( (a, b) ∈ R and (b, c) ∈ S )}

14



Composition of Relations

Example: Consider the sets

A = {1,2,3,4,5}

B = {p, q, r, s, t}

C = {x, y, z, w}

Let R be the relation from A to B given by

R = {(1, p), (1, q), (2, q), (3, r), (4, s)}.

Let S be the relation from B to C given by

S = {(p, x), (q, x), (q, y), (s, z), (t, z)}.
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Composition of Relations

Example: Consider the sets

A = {1,2,3,4,5}

B = {p, q, r, s, t}

C = {x, y, z, w}

Let R be the relation from A to B given by

R = {(1, p), (1, q), (2, q), (3, r), (4, s)}.

Let S be the relation from B to C given by

S = {(p, x), (q, x), (q, y), (s, z), (t, z)}.

The composition S ◦ R is the relation from

A to C given by

S ◦ R = {(1, x), (1, y), (2, x), (2, y), (4, z)}.
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Composition of Relations

Example: Consider the relations

R = {(x, y) ∈ R× R | y = x + 1}

S = {(x, y) ∈ R× R | y = x2}.

Determine the following:

S ◦ R =

R ◦ S =

17



Composition of Relations

Theorem: Suppose A, B, C, and D are

sets. Let R be a relation from A to B, S be

a relation from B to C, and T be a relation

from C to D.

(a) (R−1)−1 = R.

(b) T ◦ (S ◦R) = (T ◦ S) ◦R.

(c) IB ◦R = R and R ◦ IA = R.

(d) (S ◦R)−1 = R−1 ◦ S−1
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Equivalence Relations

Reflexive Property

Let R be a relation on A. We say that

R is reflexive if and only if xR x for all

x ∈ A.

1



Reflexive Property

Examples: Let A = {a, b, c}. In each case,

decide if the given relation is reflexive.

• R = {(a, b), (b, a), (c, c)}.

• R = {(a, a), (a, c), (c, b), (a, b), (c, c)}.

• R = {(a, b), (b, b), (b, c)}.

• R = {(a, a), (a, b), (b, b), (b, a), (c, c)}.

• R = {(a, b), (a, c), (b, a), (b, c), (c, a), (c, b)}.

• R = {(a, a), (b, b), (c, c)}.

2



Symmetric Property

Let R be a relation on A. We say that R

is symmetric if and only if

xR y → y R x

for all x, y ∈ A.

3



Symmetric Property

Examples: Let A = {a, b, c}. In each case,

decide if the given relation is symmetric.

• R = {(a, b), (b, a), (c, c)}.

• R = {(a, a), (a, c), (c, b), (a, b), (c, c)}.

• R = {(a, b), (b, b), (b, c)}.

• R = {(a, a), (a, b), (b, b), (b, a), (c, c)}.

• R = {(a, b), (a, c), (b, a), (b, c), (c, a), (c, b)}.

• R = {(a, a), (b, b), (c, c)}.

4



Transitive Property

Let R be a relation on A. We say that R

is transitive if and only if

(xR y ∧ y R z) → xR z

for all x, y, z ∈ A.

5



Transitive Property

Examples: Let A = {a, b, c}. In each case,

decide if the given relation is transitive .

• R = {(a, b), (b, a), (c, c)}.

• R = {(a, a), (a, c), (c, b), (a, b), (c, c)}.

• R = {(a, b), (b, b), (b, c)}.

• R = {(a, a), (a, b), (b, b), (b, a), (c, c)}.

• R = {(a, b), (a, c), (b, a), (b, c), (c, a), (c, b)}.

• R = {(a, a), (b, b), (c, c)}.

6



Equivalence Relation

Let R be a relation on A. We say that

R is an equivalence relation if and only

if R is reflexive, symmetric, and transitive.

That is, R is an equivalence relation iff

1. (Reflexivity)

xRx, for all x ∈ A.

2. (Symmetry)

if xRy, then y Rx.

3. (Transitivity)

if xRy and y R z, then xR z.

7



Equivalence Relation

Example: Let A = {a, b, c}. List all equiv-

alence relations on A.

• R = {(a, a), (b, b), (c, c)}

• R = {(a, a), (b, b), (c, c), (a, b), (b, a)}

• R = {(a, a), (b, b), (c, c), (b, c), (c, b)}

• R = {(a, a), (b, b), (c, c), (a, c), (c, a)}

• R = {(a, a), (b, b), (c, c), (a, b), (b, a)

(a, c), (c, a), (b, c), (c, b)}

9



Equivalence Relation

Definition

Let n be a fixed positive integer. Given

x, y ∈ Z, we say that x is congruent to y

modulo n if x− y is divisible to n, and we

write

x ≡ y (mod n)

The number n is called the modulus of the

congruence.

10



Equivalence Relation

Example: Let R be the relation on Z

defined by

xR y iff x ≡ y (mod n)

where n is a fixed positive integer. Prove

that R is an equivalence relation.

11



Proof: Recall that x ≡ y (mod n) if and

only if x− y = nk for some integer k.

(Reflexivity)

(i) xRx, since x− x = 0 = n · 0.

(Symmetry)

(ii) Assume xRy. Then, x − y = nk for

some integer k. Therefore, y − x = n(−k),

where −k is an integer. Therefore, y Rx.

(Transitivity)

(iii) Assume xRy and y R z. Then, x−y =

nk for some integer k, and y − z = nj for

some integer j. Then,

x− z = (x− y) + (y − z) = nk + nj

That is, x− z = n(k + j) where k + j is an

integer. Therefore, xR z.



Equivalence Classes

Let R be an equivalence relation on a nonempty

set A. Given a ∈ A, we define

[a] = {x ∈ A | xRa}.

That is, [a] is the subset of elements in A

which are related to a with respect to R.

The set [a] is called the equivalence class

of a under R. An element x ∈ A is called

a representative of [a] if x ∈ [a].

The collection of all equivalence classes with

respect to R is called A modulo R, and is

denoted

A/R = {[a] | a ∈ A}

12



Equivalence Classes

Example

Find the equivalence class of each element

of the set A = {a, b, c} with respect to the

equivalence relation

R = {(a, a), (b, b), (c, c), (a, c), (c, a)}.

[a] = {a, c}

[b] = {b}

[c] = {a, c}

14



Equivalence Classes

Example

Let R be the relation on Z defined by

xR y iff x ≡ y (mod 4)

Then,

[0] = {. . . ,−8,−4, 0, 4, 8, . . .}

[1] = {. . . ,−7,−3, 1, 5, 9, . . .}

[2] = {. . . ,−6,−2, 2, 6, 10, . . .}

[3] = {. . . ,−5,−1, 3, 7, 11, . . .}

where 0, 1, 2, and 3 are representatives of

their respective equivalence classes.

16



Equivalence Classes

Theorem: Let R be an equivalence rela-

tion on a nonempty set A. For all x, y ∈ A,

(i) [x] ⊆ A and x ∈ [x].

Thus every equivalence class is a nonempty

subset of A.

(ii) [x] = [y] iff xR y.

Thus two elements of A have identical

equivalence classes if and only if they

are related.

(iii) [x] ∩ [y] = Ø iff (x, y) /∈ R.

Thus two elements of A have disjoint

equivalence classes if and only if they

are not related.

17



Proof: Assume R is an equivalence relation

on A. Then aRa for all a ∈ A. Therefore

a ∈ [a] for all a ∈ A. This proves (i).

Next, assume [x] = [y]. Since x ∈ [x], it

follows that x ∈ [y]. Therefore, xR y.

Conversely, assume xR y. We want to show

[x] = [y]. Assume z ∈ [x]. Then, z R x.

Since z R x and xR y, it follows by transi-

tivity that z R y. Therefore, z ∈ [y]. This

proves [x] ⊆ [y].

On the other hand, assume z ∈ [y]. Then

z R y. Also, by symmetry, y R x. Therefore,

by transitivity, z R x. Therefore, z ∈ [x].

This shows [y] ⊆ [x], which completes the

proof of (ii).



Finally, assume [x]∩ [y] = Ø. Since x ∈ [x],

it follows that x /∈ [y]. Therefore, (x, y) /∈ R.

It remains to prove that if (x, y) /∈ R, then

[x]∩[y] = Ø. We will use a proof by contra-

position. Assume [x]∩ [y] 6= Ø. Then there

exists an element a ∈ A such that a ∈ [x]

and a ∈ [y]. Therefore, aR x and aR y.

By symmetry, xR a and aR y. Therefore,

by transitivity, xR y. This completes the

proof of (iii).



Equivalence Classes

Theorem: Let R be the relation on Z

defined by

xR y iff x ≡ y (mod n)

where n is a fixed positive integer. Then,

the set of distinct equivalence classes with

respect to R, denoted Zn, is given by

Zn = {[0], [1], [2], . . . , [n− 1]}.

18



Proof: Let Zn denote the set of distinct

equivalence classes with respect to R. First

we will show Zn ⊆ {[0], [1], [2], . . . , [n − 1]}.
Let [a] be the equivalence class of some

integer a. By the division algorithm, there

exist integers q and r such that a = qn + r

where 0 ≤ r < n. Therefore, a − r = qn,

which means a ≡ r (mod n). It follows by

the previous theorem that [a] = [r]. This

proves [a] ∈ {[0], [1], [2], . . . , [n− 1]}.

It remains to show that the equivalence

classes [0], [1], [2], . . . , [n−1] are all distinct.

Assume for the sake of contradiction that

there exist j, k ∈ Z such that [j] = [k] and

0 ≤ j < k < n. It follows by the previous

theorem that j ≡ k (mod n). Therefore k−j
is divisible by n. However, 0 ≤ j < k < n

implies that 1 ≤ k − j ≤ n − 1. This is a



contradiction. Therefore [j] 6= [k] for all

integers j and k such that 0 ≤ j < k < n.

This completes the proof.



Partitions

Definition

Let A be a nonempty set. A partition of

A is a collection P of nonempty subsets of

A such that

(i)
⋃

X∈P
X = A, and

(ii) If X ∈ P and Y ∈ P, then X = Y or

X ∩ Y = Ø.

In other words, a partition of A is a collec-

tion of pairwise disjoint, nonempty subsets

of A whose union is A.

1



Partitions

Examples

• Let A = {1,2,3,4,5,6}. Then,

P = {{1,2}, {3,4,5}, {6}}

is a partition of A.

• Let A = Z. Then, P = {Ze, Zo} is a

partition of A where

Ze = {. . . ,−4,−2,0,2,4, . . .},

Zo = {. . . ,−3,−1,1,3,5, . . .}

are the set of even integers and odd

integers, respectively.

2



Partitions

Examples

• Let A = Z+. Then,

P = {{1}, {2,3}, {4,5,6}, {7,8,9,10}, . . .}

is a partition of A.

• Let A = R. Then,

P = {Gn | n ∈ Z}

is a partition of A where Gn = [n, n+ 1).

3



Equivalence Classes and Partitions

Theorem: If R is an equivalence relation

on a nonempty set A, then A/R, the set of

equivalence classes with respect to R is a

partition of A.

4



Proof: Assume R is an equivalence rela-

tion on a nonempty set A. Previously, we

proved that for all a, b ∈ A

(a, b) ∈ R iff [a] = [b],

and

(a, b) /∈ R iff [a] ∩ [b] = Ø.

Therefore, for all a, b ∈ A, we have

[a] = [b] or [a] ∩ [b] = Ø.

This proves that the set of equivalence classes

with respect to R are pairwise disjoint.

It remains to show that⋃
[a]∈A/R

[a] = A.

Clearly,
⋃

[a]∈A/R

[a] ⊆ A, since each equiva-



equivalence class [a] is a subset of A. Con-

versely, assume x ∈ A. Then,

x ∈ [x] ⊆
⋃

[a]∈A/R

[a].

Therefore, A ⊆
⋃

[a]∈A/R

[a]. This com-

pletes the proof.



Equivalence Classes and Partitions

Example

Let A = {a, b, c}. The distinct equivalence

classes of the equivalence relation

R = {(a, a), (b, b), (c, c), (a, c), (c, a)}.

are [a] = [c] = {a, c} and [b] = {b}. Hence,

A/R = {{a, c}, {b}}

is a partition of A.

5



Equivalence Classes and Partitions

Example

Let R be the relation on Z defined by

xR y iff x ≡ y (mod 4)

The distinct equivalence classes of R are

[0] = {. . . ,−8,−4, 0, 4, 8, . . .},

[1] = {. . . ,−7,−3, 1, 5, 9, . . .},

[2] = {. . . ,−6,−2, 2, 6, 10, . . .},

[3] = {. . . ,−5,−1, 3, 7, 11, . . .}.

Hence,

Z /R = {[0], [1], [2], [3]}

is a partition of Z.

6



Equivalence Classes and Partitions

Theorem: Assume P is a partition of a

nonempty set A. Let Q be the relation on

A defined by

xQy iff x ∈ S and y ∈ S for some S ∈ P.

Then,

(i) Q is an equivalence relation on A,

(ii) A/Q = P.

7



Proof of (i): Assume P is a partition of a

nonempty set A. Then, for all x ∈ A, there

exists a set S in the partition P such that

x ∈ S. Therefore, xQx for all x ∈ A. This

proves Q is reflexive.

Next assume xQy where x, y ∈ A. Then

there exists a set S in the partition P such

that x ∈ S and y ∈ S. Equivalently, we

have y ∈ S and x ∈ S. Hence, y Qx. This

proves Q is symmetric.

Finally, assume that xQy and y Q z where

x, y, z ∈ A. Then there exist sets S and T

in the partition P such that x ∈ S and

y ∈ S, and y ∈ T and z ∈ T . Since P is a

partition, we know S = T or S ∩ T = Ø.

Since y ∈ S ∩ T , it follows that S = T .

Therefore, x ∈ S and z ∈ S which means

xQz. This proves Q is transitive.



Lemma: Assume S ∈ P. Then, x ∈ S if

and only if [x] = S.

Proof: Assume S ∈ P. We will divide the

proof into two parts.

Part 1. (x ∈ S implies [x] = S) Assume

x ∈ S. We want to show that [x] = S.

First, assume y ∈ [x]. Then, y Qx. There-

fore there exists a set T in the partition

P such that y ∈ T and x ∈ T . Since

x ∈ S ∩ T , it follows that S = T . Hence

y ∈ S. This shows [x] ⊆ S. On the other

hand, assume y ∈ S. Then, y ∈ S and

x ∈ S. Hence y Qx. Therefore, y ∈ [x].

This proves S ⊆ [x]. Thus, [x] = S.

Part 2. ([x] = S implies x ∈ S) Assume

[x] = S. Then, x ∈ S, since x ∈ [x].



Proof of (ii):

First, we want to show A/Q ⊆ P. Assume

[x] ∈ A/Q. There exists a set S in the

partition P such that x ∈ S. Therefore,

by the previous lemma, [x] = S ∈ P.

Next, we want to show P ⊆ A/Q. As-

sume S ∈ P. Since S is nonempty, there

exists an element x ∈ S. Therefore, by the

previous lemma, S = [x] ∈ A/Q.

Therefore, A/Q = P, and the proof is com-

plete.



Ordering Relations

Comparability

Let R be a relation on a nonempty set A.

Given x, y ∈ A, we say that x and y are

comparable if xR y or y R x.

1



Comparability

Example

Let R be the relation on Z+ defined by

xR y iff x is divisible by y.

Then,

• x = 2 and y = 6 are comparable,

since (y, x) = (6,2) ∈ R.

• x = 3 and y = 8 are not comparable,

since (3,8) /∈ R and (8,3) /∈ R.

2



Comparability

Example

Let X = {1,2,3}, and let R be the relation

on P(X) defined by

AR B iff A ⊆ B.

Then,

• the sets A = {1,2,3} and B = {1,3}
are comparable, since B ⊆ A.

• the sets A = {1,2} and B = {2,3}
are not comparable, since A 6⊆ B and

B 6⊆ A.

3



Antisymmetric Property

Let R be a relation on A. We say that R

is antisymmetric if and only if

xR y ∧ y R x → x = y

for all x, y ∈ A.

4



Antisymmetric Property

Example

Let R be the relation on Z+ defined by

xR y iff x is divisible by y.

Then, R antisymmetric.

5



Antisymmetric Property

Example

Let R be the relation on Z+ defined by

xR y iff x is divisible by y.

Then, R antisymmetric.

Proof:

Assume x is divisible by y and y is divisi-

ble by x. Then, x = jy and y = kx where

j, k ∈ Z+. Then, x = j(kx). Therefore,

jk = 1. Since j and k are positive integers,

follows that j = k = 1. Hence, x = y.

6



Antisymmetric Property

Example

Let R be the relation on R defined by

xR y iff x ≤ y.

Then, R antisymmetric, since x ≤ y and

y ≤ x implies x = y.

7



Antisymmetric Property

Example

Let R be the relation on R defined by

xR y iff x < y.

Then, R antisymmetric, since the premise

x < y and y < x is always false.

8



Antisymmetric Property

Example

Let X be a set, and let R be the relation

on P(X) defined by

AR B iff A ⊆ B.

Then, R antisymmetric, since A ⊆ B and

B ⊆ A implies A = B.
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Partially Ordered Set

Let R be a relation on A. We say that

R is a partial order if and only if R is

reflexive, antisymmetric, and transitive.

A set A with partial order R is called a

partially ordered set, or poset.

10



Partially Ordered Set

Example

Let R be the relation on Z defined by

xR y iff x ≤ y and x + y is even.

Then, R is a partial order on Z.

Note that xR y if and only if x ≤ y and x

and y have the same parity.

11



Proof:

(i) (R is reflexive.) For all x ∈ Z, we

have x ≤ x and x + x = 2x is even.

Therefore, xR x.

(ii) (R is antisymmetric.) Assume xR y

and y R x. Then, x ≤ y and y ≤ x.

Therefore, x = y.

(iii) (R is transitive.) Assume xR y and

y R z. Then, x ≤ y and y ≤ z. There-

fore, x ≤ z. Also, there exist integers

j and k such that x + y = 2j and

y + z = 2k. Therefore,

x + z = (2j − y) + (2k − y)

= 2j + 2k − 2y

= 2(j + k − y).

where (j +k−y) is an integer. Hence,

x + z is even.



Digraphs

If A is a small finite set, we can use a

directed graph or digraph to represent a

relation R on A. Each element of A cor-

responds to a node in the graph called a

vertex. Each ordered pair (x, y) ∈ R is

represented as a directed arrow from x to

y called an arc. An arc from a vertex to

itself is called a loop.
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Digraphs

Example: In each case, draw the digraph

for the given relation on A = {a, b, c}.

• R = {(a, b), (b, c), (c, a)}

• R = {(a, b), (b, a), (b, b), (c, b)}

13



• R = {(a, a), (b, b), (c, c), (a, b), (b, a)

(a, c), (c, a), (b, c), (c, b)}

• R = {(a, a), (b, b), (c, c), (a, b), (b, a)}

• R = {(a, a), (b, b), (c, c)}



Partially Ordered Set

Theorem: Let R be a partial order on a

nonempty set A. If

xR x1, x1 R x2, x2 R x3, . . . , xnR x,

where x, x1, x2, . . . xn ∈ A, then

x = x1 = x2 = · · · = xn.

This means that the digraph of a partial or-

der can never contain a closed path except

for loops at individual vertices.
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Proof: Let R be a partial order on a

nonempty set A.

Base Step: Let n = 1. Assume xR x1 and

x1 R x. Then, by antisymmetry, x = x1.

This proves the proposition when n = 1.

Inductive Step: Assume that the proposi-

tion holds when n = k is a fixed integer

positive integer. We want to prove that

the proposition also holds when n = k + 1.

Assume

xR x1, x1 R x2, x2 R x3, . . . , xk R xk+1, xk+1 R x,

where x, x1, x2, . . . xk, xk+1 ∈ A. Since R is

transitive, xkR xk+1 and xk+1 R x implies

xkR x. Therefore we have

xR x1, x1 R x2, x2 R x3, . . . , xk R x,



and it follows by the inductive hypothesis

that

x = x1 = x2 = · · · = xk.

In particular, x = xk. Therefore, xR xk+1,

since xkR xk+1. Then, by antisymmetry,

xR xk+1 and xk+1 R x implies x = xk+1.

Therefore,

x = x1 = x2 = · · · = xk = xk+1,

which proves the proposition is true for n =

k + 1.

Therefore, by induction, the proposition is

true for all positive integers n.



Immediate Predecessor

Let R be a partial order on a nonempty set

A, and let a, b ∈ A with a 6= b. Then, a is

an immediate predecessor of b iff aR b

and there does not exist c ∈ A with c 6= a

such that aR c and cR b.
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Immediate Predecessor

Example

Let A = {1,2,3}, and consider the partial

order

R = {(1,1), (2,2), (3,3), (1,2), (2,3), (1,3)}.

Then,

• 1 is an immediate predecessor of 2.

• 2 is an immediate predecessor of 3.

• 1 is not an immediate predecessor of 3.

16



Immediate Predecessor

Example

Let A = {1,2,3}, and consider the partial

order ⊆ on the power set P(A). Then,

• Ø is an immediate predecessor of {1},
{2}, and {3}.

• {1} is an immediate predecessor of {1,3}
and {1,2}.

• {1,3} is an immediate predecessor of

{1,2,3}.

• {1} is not an immediate predecessor of

{1,2,3}, since {1} ⊆ {1,2} ⊆ {1,2,3}.
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Upper and Lower Bounds

Let R be a partial order on a nonempty set

A, and let B ⊆ A. We say that an element

a ∈ A is an upper bound for B iff

bR a for all b ∈ B.

We say that an element a ∈ A is an lower

bound for B iff

aR b for all b ∈ B.

18



Upper and Lower Bounds

Example

Let A = P(X) where X = {1,2,3,4} and

consider the partial order ⊆ on A. Let

B = {{1,4}, {2,4}}. Then,

• {1,2,3,4} is an upper bound for B.

• {1,2,4} is an upper bound for B.

• Ø is a lower bound for B.

• {4} is a lower bound for B.
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Supremum

Let R be a partial order on a nonempty

set A, and let B ⊆ A. We say that an el-

ement a ∈ A is a least upper bound or

supremum for B iff

(i) a is an upper bound for B.

(ii) aR x for every upper bound x of B.

The supremum of B is denoted sup(B).

20



Infimum

Let R be a partial order on a nonempty

set A, and let B ⊆ A. We say that an ele-

ment a ∈ A is a greatest lower bound or

infimum for B iff

(i) a is a lower bound for B.

(ii) xR a for every lower bound x of B.

The infimum of B is denoted inf(B).
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Infimum and Supremum

Example

Let A = P(X) where X = {1,2,3,4} and

consider the partial order ⊆ on A. Let

B = {{1,4}, {2,4}}. Then,

• {1,2,3,4} is not a least upper bound

for B.

• {1,2,4} is a least upper bound for B.

• Ø is not a greatest lower bound for B.

• {4} is a greatest lower bound for B.
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Infimum and Supremum

Theorem: Let R be a partial order on a

nonempty set A, and let B ⊆ A. If sup(B)

exists, it is unique. Also, if inf(B) exists,

it is unique.
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Proof:



Maximum and Minimum

Let R be a partial order on a nonempty

set A, and let B ⊆ A. If sup(B) exists

and sup(B) ∈ B, then sup(B) is called the

largest element, or greatest element, or

maximum element of B.

If inf(B) exists and inf(B) ∈ B, then inf(B)

is called the smallest element, or least el-

ement, or minimum element of B.
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Maximum and Minimum

Example

Let A = R and consider the partial order

≤ on A. Let B = [0,1). Then,

• Any real number a ≥ 1 is an upper

bound for B.

• Any real number a ≤ 0 is a lower bound

for B.

• inf(B) = 0 and sup(B) = 1.

• B does not have a maximum element,

since 1 = sup(B) /∈ B

• The minimum element of B is 0, since

0 = inf(B) ∈ B
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Total Order

A partial order R on A is called a total

order, or linear order, on A if any two

elements x and y of A are comparable

(xR y or y R x).
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Total Order

Examples

• The relation ≤ is a total order on each

of the sets Z+, Z, R. (Alternatively,

we say these sets are totally, or linearly,

ordered by the relation ≤.)

• The relation ⊆ on the set P(A) where

A = {1,2,3} (or any set A with two

or more elements) is not a total order,

since not all pairs of subsets are com-

parable. For example, {1,2} 6⊆ {2,3}
and {2,3} 6⊆ {1,2}.
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Well Ordering

A total order R on a nonempty set A is

called a well ordering on A iff every non-

empty subset B of A contains a smallest

element.
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Well Ordering

Examples

• The relation ≤ is a well-ordering on the

set Z+, since every collection of pos-

itive integers has a smallest element.

(This is the Well Ordering Principle.)

• The relation ≤ is not a well ordering

on the set Z, since there are subsets

of Z that are unbounded below (e.g.,

A = {. . . ,−3,−2,−1,0} has no smallest

element.)

• The relation ≤ is not a well ordering on

the set R (or even [0,1]), since there

are subsets of R that have no smallest

29



element (e.g., A = (0,1) has no small-

est element.)



Well Ordering

Well-Ordering Theorem

Every set can be well ordered by some total

order relation.

Proof: The proof requires the Axiom of

Choice and will be revisited later.
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Functions as Relations

Definition

Recall that if A and B are sets, then a re-

lation from A to B is a subset of A×B.

A function from A to B is a relation f

from A to B with the following properties

(i) The domain of f is A.

(ii) If (x, y) ∈ f and (x, z) ∈ f , then y = z.

In other words, for each a ∈ A, there is a

unique element b ∈ B such that (a, b) ∈ f .

1



Function Notation

If f is a function from A to B, we write

f : A→ B,

and we say that A is the domain of f and

B is the codomain of f .

2



Functions

Example: Let A = {1,2,3} and B =

{4,5,6}. Determine which of the follow-

ing relations are functions from A to B..

• R = {(1,4), (2,5), (3,6), (2,6)}

• R = {(1,4), (2,6), (3,5)}

• R = {(1,5), (2,5), (3,4)}

• R = {(1,4), (3,6)}

3



Functions

Example: Let A = {1,2,3} and B =

{4,5,6}. Determine which of the follow-

ing relations are functions from A to B.

• R = {(1,4), (2,5), (3,6), (2,6)}

R is not a function, since R is

not “single-valued:”

(2,5) ∈ R and (2,6) ∈ R

• R = {(1,4), (2,6), (3,5)}

Function

• R = {(1,5), (2,5), (3,4)}

Function

4



• R = {(1,4), (3,6)}

R is not a function from A to B, since

Dom(R) = {1,3} 6= A.



Functions

Example: Let F be the relation from Z to

Z defined by

F = {(x, y) ∈ Z× Z | y = x2}.

Prove that F is a function from Z to Z.

Proof:
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Functions

Example: Let F be the relation from Z to

Z defined by

F = {(x, y) ∈ Z× Z | y = x2}.

Prove that F is a function Z to Z.

Proof: First we’ll show that Dom(F ) = Z.

Assume x ∈ Z. Let y = x2. Then, y ∈ Z.

Therefore, (x, y) ∈ Z× Z and y = x2, which

means (x, y) ∈ F . Therefore, x ∈ Dom(F ).

This proves Dom(F ) = Z.

Next, we’ll show that F is “single-valued.”

Assume (x, y) ∈ F and (x, z) ∈ F where

x, y, z ∈ Z. Then y = x2 and z = x2. There-

fore y = z. This completes the proof.
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Functions

Example: Let F be the relation from R

to R defined by

F = {(x, y) ∈ R× R | x = y3}.

Prove that F is a function R to R.

Proof:
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Functions

Example: Let F be the relation from R

to R defined by

F = {(x, y) ∈ R× R | x = y3}.

Prove that F is a function R to R.

Proof: First we’ll show that Dom(F ) = R.

Assume x ∈ R. Let y = 3
√
x. Then, y ∈ R.

Therefore, (x, y) ∈ R× R and x = ( 3
√
x)3 =

y3, which means (x, y) ∈ F . Therefore, x ∈
Dom(F ). This proves Dom(F ) = R.

Next, we’ll show that F is “single-valued.”

Assume (x, y) ∈ F and (x, z) ∈ F where

x, y, z ∈ R. Then x = y3 and x = z3. There-

fore y3 = z3. Therefore, y = z. This com-

pletes the proof.
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Functions

Example: Let F be the relation from R

to R defined by

F = {(x, y) ∈ R× R | x = y2}.

Explain why F is not a function from R to

R.
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Functions

Example: Let F be the relation from R

to R defined by

F = {(x, y) ∈ R× R | x = y2}.

Explain why F is not a function from R to

R.

Solution:

If (x, y) ∈ F , then x = y2 ≥ 0. Therefore

the domain of F is [0,∞), not R.

Also, F is not single-valued. For example,

when x = 4, we have y = ±2. That is,

(4,2) ∈ F and (4,−2) ∈ F . Hence, F is not

a function.
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Range of a Function

If f : A → B and the ordered pair (a, b)

belongs to f , then we write

f(a) = b

and we say b the image of a under f .

The range of f , denoted Rng(f), is the set

of all images of elements of A. That is,

Rng(f) = {b ∈ B | (a, b) ∈ f for some a ∈ A}

11



Range of a Function

Example: Find the range of each function.

• F : Z→ Z defined by F (x) = x2.

Rng(F ) = {0,1,4,9,16, . . .}

• F : R→ R defined by F (x) = sin(x).

Rng(F ) = [−1,1]

• F : {1,2,3} → {4,5,6} defined by

F = {(1,5), (2,5), (3,4)}.

Rng(F ) = {4,5}

12



Composition of Functions

Theorem

Assume f : A→ B and g : B → C are func-

tions. Then the composite relation g ◦ f ,

given by

{
(x, z) ∈ A×C

∣∣∣ ∃y [(x, y) ∈ f and (y, z) ∈ g]
}

is a function from A to C.

14



Proof: Assume f : A → B and g : B → C

are functions. We want to show that the

relation g ◦ f is a function from A to C.

First we want to show that the domain of

g ◦ f is A. Since g ◦ f ⊆ A × C, we have

Dom(g ◦ f) ⊆ A. Conversely, assume x ∈ A.

Since f : A→ B is a function, there exists

y ∈ B such that (x, y) ∈ f . Then, since

g : B → C is a function, there exists z ∈ C
such that (y, z) ∈ g. Therefore, (x, z) ∈ g◦f ,

which shows x ∈ Dom(g ◦ f). This proves

Dom(g ◦ f) = A.

Next, we want to show that g ◦ f is single-

valued. Assume (x, z1) ∈ g ◦ f and (x, z2) ∈
g ◦ f . Then, there exist y1 ∈ B such that

(x, y1) ∈ f and (y1, z1) ∈ g, and there exists

y2 ∈ B such that (x, y2) ∈ f and (y2, z2) ∈ g.



In particular, (x, y1) ∈ f and (x, y2) ∈ f ,

and since f is single-valued, it follows that

y1 = y2. Then, (y1, z1) ∈ g and (y1, z2) =

(y2, z2) ∈ g, and since g is single-valued, it

follows that z1 = z2. This proves g ◦ f is

single-valued.

Therefore, g ◦ f is a function from A to B.



Composition of Functions

Theorem: Assume f : A → B, g : B → C,

and h : C → D are functions. Then,

(h ◦ g) ◦ f = h ◦ (g ◦ f).

That is, composition of functions is asso-

ciative.
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Proof: By the previous theorem, we have

Dom((h ◦ g) ◦ f) = Dom(f) = A,

Dom(h ◦ (g ◦ f)) = Dom((g ◦ f))

= Dom(f)

= A.

This shows that the domains of (h ◦ g) ◦ f
and h ◦ (g ◦ f) are the same. Next, assume

x ∈ A. Then,

((h ◦ g) ◦ f)(x) = (h ◦ g)(f(x))

= h(g(f(x)))

= h((g ◦ f)(x))

= (h ◦ (g ◦ f))(x).

Therefore, (h ◦ g) ◦ f = h ◦ (g ◦ f).



Composition of Functions

Example: Let A = {1,2,3,4,5} and con-

sider the functions f, g : A→ A given by

f = {(2,4), (5,1), (3,2), (1,2), (4,3)}

g = {(4,1), (5,4), (1,2), (2,1), (3,4)}

Determine the following.

(g ◦ f)(1) =

(g ◦ f)(2) =

(g ◦ f)(3) =

(g ◦ f)(4) =

(g ◦ f)(5) =

g ◦ f =

Rng(g ◦ f) =

16



Composition of Functions

Example: Let A = {1,2,3,4,5} and con-

sider the functions f, g : A→ A given by

f = {(2,4), (5,1), (3,2), (1,2), (4,3)}

g = {(4,1), (5,4), (1,2), (2,1), (3,4)}

Determine the following.

(g ◦ f)(1) = g(f(1)) = g(2) = 1

(g ◦ f)(2) = g(f(2)) = g(4) = 1

(g ◦ f)(3) = g(f(3)) = g(2) = 1

(g ◦ f)(4) = g(f(4)) = g(3) = 4

(g ◦ f)(5) = g(f(5)) = g(1) = 2

g ◦ f = {(1,1), (2,1), (3,1), (4,4), (5,2)}

Rng(g ◦ f) = {1,2,4}
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One-To-One Function

Let f : A → B. We say that f is one-to-

one, or injective, if and only if

(x1, y) ∈ f ∧ (x2, y) ∈ f → x1 = x2

for all x1, x2 ∈ A and y ∈ B.

18



One-To-One Function

Equivalently, f : A → B is one-to-one if

and only if for all x1, x2 ∈ A

f(x1) = f(x2) → x1 = x2

If f is one-to-one, we say f is an injection.
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Onto Function

Let f : A → B. We say that f is onto,

or surjective, if and only if for each y ∈ B
there exists x ∈ A such that f(x) = y.

That is, f is onto if and only if the range

of f is equal to the codomain of f .

If f is onto, we say that f is a surjection.

20



Examples

Let A = {1,2,3,4}, B = {a, b, c}, C = {α, β, γ}

Determine if the given functions are one-

to-one, onto, both or neither.

1. f : A→ B defined by


f(1) = a

f(2) = b

f(3) = a

f(4) = b

2. f : B → C defined by


f(a) = β

f(b) = γ

f(c) = α

3. f : B → A defined by


f(a) = 3

f(b) = 1

f(c) = 4

4. f : A→ C defined by


f(1) = α

f(2) = β

f(3) = β

f(4) = γ
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Proof Strategy

To show f is injective

Show that if f(x) = f(y), then x = y.

To show f is not injective

Show that there exist x and y such that

f(x) = f(y) and x 6= y.

To show f is surjective

Show that for each element y in the codomain

there exists an element x in the domain

such that f(x) = y.

To show f is not surjective

Show there exists an element y in the codomain

such that y 6= f(x) for any x in the domain.
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Example

Prove or disprove:

The function f : Z→ Z defined by

f(n) = 2n− 3

is injective.

23



Example

Prove or disprove:

The function f : Z→ Z defined by

f(n) = 2n− 3

is injective.

f is injective.

Proof: For all n,m ∈ Z we have

f(n) = f(m) iff 2n− 3 = 2m− 3

iff 2n = 2m

iff 2n− 2m = 0

iff 2(n−m) = 0

iff (n−m) = 0

iff n = m.
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In particular, f(n) = f(m) implies n = m

for all n,m ∈ Z, which proves that f is in-

jective.

Note that we did not multiply both sides

of the equation 2n = 2m by 1/2, since the

codomain of f is Z and 1/2 is not an inte-

ger.



Example

Prove or disprove:

The function f : Z→ Z defined by

f(n) = 2n− 3

is surjective.

25



Example

Prove or disprove:

The function f : Z→ Z defined by

f(n) = 2n− 3

is surjective.

f is not surjective.

The range of f contains only odd integers,

therefore Rng(f) 6= Z. For example,

0 /∈ Rng(f)

since the equation f(n) = 2n − 3 = 0 has

no solution in the domain Z.
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Example

Prove or disprove:

The function f : Z→ Z defined by

f(n) =

n+ 1 if n is odd

n/2 if n is even

is injective.
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Example

Prove or disprove:

The function f : Z→ Z defined by

f(n) =

n+ 1 if n is odd

n/2 if n is even

is injective.

f is not injective.

Let n = 1 and m = 4. Then,

f(n) = f(1) = 1 + 1 = 2,

and

f(m) = f(4) = 4/2 = 2.

Therefore f(m) = f(n), but m 6= n. This

proves f is not injective.
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Example

Prove or disprove:

The function f : Z→ Z defined by

f(n) =

n+ 1 if n is odd

n/2 if n is even

is surjective.

29



Example

Prove or disprove:

The function f : Z→ Z defined by

f(n) =

n+ 1 if n is odd

n/2 if n is even

is surjective.

f is surjective.

Proof: We want to show that for all m ∈ Z

(codomain), there exists n ∈ Z (domain)

such that f(n) = m.

Assume m ∈ Z. Let n = 2m. Then, n is an

even integer. Therefore,

f(n) = n/2 = 2m/2 = m.
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This proves there exists an integer n, namely

n = 2m, such that f(n) = m. Therefore, f

is surjective.

Note that if n is odd, then f(n) = n + 1

is even. So if m is an even number in the

codomain, then there are both even and

odd values of n that map to m. Either

n = 2m (even) as above, or n = m − 1

(odd), which gives

f(n) = n+ 1 = (m− 1) + 1 = m.

Since the former choice works even in the

case when m is odd, there was no need to

consider the latter choice for n.



Bijection

A function f : A→ B is said to be a bijec-

tion, or one-to-one correspondence if f

is both one-to-one and onto.

Examples

• f : Z→ Z defined by f(n) = n+ 1

• f : R→ R defined by f(x) = 2x

• f : Z+ → Z+ defined by f(n) =
{
n+ 1 if n is odd

n− 1 if n is even
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Bijection

Example: Prove that f : R+ → (0,1),

defined by

f(x) =
1

1 + x

is a bijection.
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Proof: We want to show that f is one-to-

one (injective) and onto (surjective).

Step 1. (f is one-to-one.) For all x1, x2 ∈
R+ we have

f(x1) = f(x2) iff
1

1 + x1
=

1

1 + x2

iff 1 + x1 = 1 + x2

iff x1 = x2

In particular, f(x1) = f(x2) implies x1 = x2

for all x1, x2 ∈ R+, which proves that f is

one-to-one.

Step 2. (f is onto.) Let y = 1
1+x. Solving

for x in terms of y we obtain

x =
1

y
− 1.



Note that if 0 < y < 1, then

x =
1

y
− 1 >

1

1
− 1 = 0.

Therefore, for all y ∈ (0,1), there exists

x ∈ R+, namely x = 1
y − 1, such that

f(x) =
1

1 + x
=

1

1 + (1
y − 1)

=
1
1

y

= y

This proves f is onto.

Therefore, f is a bijection.



Image and Preimage

If f : A→ B and S ⊆ A, then the image of

S under f is the set

f(S) = {b ∈ B | b = f(s) for some s ∈ S}

If T ⊆ B, then the preimage of T is the set

f−1(T ) = {a ∈ A | f(a) ∈ T}
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Image and Preimage

Example: Consider the function f : R→ R

defined by f(x) = x2.

• codomain of f :

• range of f :

• If S = [−2,3), then f(S) =

• If T = (−1,4], then f−1(T ) =

34



Image and Preimage

Example: Consider the function f : R→ R

defined by f(x) = x2.

• codomain of f : R

• range of f : [0,∞)

• If S = [−2,3), then f(S) = [0,9)

• If T = (−1,4], then f−1(T ) = [−2,2]
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Image and Preimage

Example: Consider the function f : R→ R

defined by f(x) = |x− 2|.

(a) Let S = [−2,3). Find f(S).
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(b) Let T = (−1,4]. Find f−1(T ).



Image and Preimage

Let f : A→ B, where A and B are nonempty

sets. Prove that if S1, S2 ⊆ A, then

f(S1 ∪ S2) = f(S1) ∪ f(S2).
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Proof: First assume y ∈ f(S1 ∪ S2). Then,

there exists an element s ∈ S1 ∪ S2 such

that y = f(s). Therefore y = f(s) for

some s ∈ S1, or y = f(s) for some s ∈
S2. That is, y ∈ f(S1) or y ∈ f(S2).

Therefore, y ∈ f(S1) ∪ f(S2). This proves

f(S1 ∪ S2) ⊆ f(S1) ∪ f(S2).

Conversely, assume y ∈ f(S1)∪f(S2). Then,

y ∈ f(S1) or y ∈ f(S2). Therefore, y = f(s)

for some s ∈ S1, or y = f(s) for some s ∈
S2. Therefore, there exists s ∈ S1∪S2 such

that y = f(s). This proves f(S1)∪ f(S2) ⊆
f(S1 ∪ S2).

Therefore, f(S1) ∪ f(S2) = f(S1 ∪ S2).

38



Image and Preimage

Let f : A→ B, where A and B are nonempty

sets. Prove that if T1, T2 ⊆ B, then

f−1(T1 ∩ T2) = f−1(T1) ∩ f−1(T2)
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Proof: For all a ∈ A, we have

a ∈ f−1(T1 ∩ T2) iff f(a) ∈ T1 ∩ T2

iff f(a) ∈ T1 and f(a) ∈ T2

iff a ∈ f−1(T1) and a ∈ f−1(T2)

iff a ∈ f−1(T1) ∩ f−1(T2).

Therefore, f−1(T1∩T2) = f−1(T1)∩f−1(T2).
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Identity Function

Let A be a set. The identity function on

A is the function iA : A→ A defined by

iA(x) = x

for all x ∈ A. That is,

iA = {(x, x) | x ∈ A}.

The identity function iA is one-to-one and

onto, so it is a bijection.
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Inverse Function

Let f : A→ B be a bijection. The inverse

function of f , denoted by f−1, is the func-

tion that assigns to an element b ∈ B the

unique element a ∈ A such that f(a) = b.

That is,

f−1(b) = a if and only if f(a) = b

If f has an inverse function, we say that f

is invertible.

Note that we use the notation f−1(T ) to

denote the preimage of a set T ⊆ B, even

when f is not invertible.
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Examples

Let A = {1,2,3,4}, B = {a, b, c}, C = {α, β, γ}.

Determine if each function invertible. If so,

find f−1.

1. f : B → C defined by


f(a) = β

f(b) = γ

f(c) = α

2. f : A→ B defined by


f(1) = a

f(2) = b

f(3) = a

f(4) = b
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Example

Determine if each function invertible. If so,

find f−1.

1. f : Z→ Z defined by f(n) = n+ 1

2. f : R→ R defined by f(x) = 2x+ 3

3. f : R→ R defined by f(x) = x2
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Functions with Restricted Domains

If f : A→ B is a function, and D ⊆ A, then

the restriction of f to D, denoted f
∣∣∣
D

is the function

f
∣∣∣
D

=
{

(x, y) ∈ f | x ∈ D
}
.

If g and h are functions and g is a restric-

tion of h, we say h is an extension of g.
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Functions with Restricted Domains

Example: Let f : R → R be the function

defined by f(x) = x2. If D = [0,∞), then

f
∣∣∣
D

=
{

(x, y) ∈ R× R | y = x2 and x ≥ 0
}
.

The graph of f
∣∣∣
D

is shown below.

46



Functions with Restricted Domains

Example: Let f : R → R be the function

defined by f(x) = sin(x). If D = [−π2,
π
2],

then f |D is given by

{
(x, y) ∈ R×R | y = sin(x) and −

π

2
≤ x ≤

π

2

}
.

The graph of f
∣∣∣
D

is shown below.

47



Piecewise-Defined Functions

If f1 : A1 → B1 and f2 : A2 → B2 are func-

tions, and A1 ∩ A2 = Ø, then the function

f : A1 ∪A2 → B1 ∪B2 defined by

f(x) =

f1(x) if x ∈ A1,

f2(x) if x ∈ A2.

is called a piecewise-defined function.

As a set of ordered pairs, note that

f = f1 ∪ f2.
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Piecewise-Defined Functions

Example: f(x) = |x|

The absolute value function, denoted by

f(x) = |x| is the piecewise defined function

|x| =

x if x ≥ 0,

−x if x < 0.

In other words,

f(x) =

f1(x) if x ∈ [0,∞),

f2(x) if x ∈ (−∞,0).

where f1 : [0,∞)→ R and f2 : (−∞,0)→ R

are defined by f1(x) = x and f2(x) = −x.
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Characteristic Functions

Let U be the universal set, and let A ⊆ U .

Then, χA : U → R, defined by

χ
A(x) =

1 if x ∈ A

0 if x ∈ U −A

is called the characteristic function on A.
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Characteristic Functions

Example

Let U = R and let A = [0,1]. Then,

χ
[0,1] : R→ R, is given by

χ
[0,1](x) =

1 if x ∈ [0,1]

0 otherwise
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Piecewise-Defined Functions

More generally, if

F = {fα : Aα → Bα | α ∈∆}

is a family of functions with pairwise dis-

joint domains {Aα | α ∈∆}, then

f =
⋃
α∈∆

fα

is the piecewise-defined function

f(x) = fα(x) iff x ∈ Aα.
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Piecewise-Defined Functions

Example f(x) = bxc

Let Ak = [k, k + 1) for each k ∈ Z, and let

fk : Ak → R be the constant function

fk(x) = k.

Then, the greatest integer function or

floor function, denoted f(x) = bxc is the

piecewise defined function

f =
⋃
k∈Z

fk

That is,

bxc = k iff x ∈ Ak.
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Sequence

Let S be a set. A sequence with values

in S is a function s : Z+ → S. If n ∈ Z+,

then s(n) ∈ S represents the nth term in

the sequence, which we denote by sn.

57



Sequence

Example

Let S = R, and let s : Z+ → S be the

function defined by s(n) = 2−n. Then s

corresponds to the sequence

s1 =
1

2
,

s2 =
1

4
,

s3 =
1

8
,

s4 =
1

16
,

s5 =
1

32
,

...
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Cardinality of Sets

Cardinality

We say the sets A and B have the same

cardinality if and only if there is a one-to-

one correspondence (bijection) from A to

B. When A and B have the same cardinal-

ity, we write |A| = |B|.
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Cardinality

If there is a one-to-one function from A to

B, the cardinality of A is less than or the

same as the cardinality of B and we write

|A| ≤ |B|. Moreover, when |A| ≤ |B| and

A and B have different cardinality, we say

that the cardinality of A is less than the

cardinality of B and we write |A| < |B|.
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Countable Set

A set that is either finite or has the same

cardinality as the set of positive integers

Z+ is called countable. A set that is not

countable is called uncountable.

When an infinite set S is countable, we de-

note the cardinality of S by ℵ0 (where ℵ is

aleph, the first letter of the Hebrew alpha-

bet). We write |S| = ℵ0 and say that S has

cardinality aleph null.
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Countable Set

Example: Prove the set of odd positive

integers is a countable set.

Solution: Let O = {1,3,5, . . .} be the

set of odd positive integers. To show O

is countable we must find a bijection from

Z+ to O.

The function f : Z+ → O defined by

f(n) = 2n− 1

is a bijection. Hence O is a countable set.
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Countable Set

Hilbert’s Grand Hotel

Consider a “Grand Hotel”, which has a count-

ably infinite number of rooms, numbered

1,2,3, . . .

Question: How can we accommodate a

new guest arriving at a fully occupied Grand

Hotel without removing any of the current

guests?
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Countable Set

Hilbert’s Grand Hotel

Question: How can we accommodate a new guest

arriving at a fully occupied Grand Hotel without re-

moving any of the current guests?

Solution: Because the rooms of the Grand Hotel

are countable, we can list them as Room 1, Room

2, Room 3, and so on. When a new guest arrives,

we move the guest in Room 1 to Room 2, the guest

in Room 2 to Room 3, and in general, the guest in

Room n to Room n + 1, for all positive integers n.

This frees up Room 1, which we assign to the new

guest, and all the current guests still have rooms.
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Countable Set

Hilbert’s Grand Hotel

Equivalent problem: Show that the union of count-

able set and a singleton set is countable.

Solution: Let A be a countable set. Then, there is

a bijective function f : Z+ → A. Let A = {a1, a2, a3, . . .}
where we define an = f(n) for all n ∈ Z+.

Let the singleton set be represented by {a0}. Then,

the function g : Z+ → A∪{a0} defined by g(n) = an−1

is a bijection, which shows that A∪{a0} is countable.

(To relate this problem to the previous one, think

of A as the set of hotel guests and a0 as the new

guest. Then, prior to the arrival of a0, f(n) = an

means room n is occupied by guest an.)
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Countable Set

Example: Prove the set of integers is

countable.

Solution: Consider the function f : Z+ →
Z defined by

f(n) =


n

2
if n is even

−
(n− 1)

2
if n is odd

Since f is a bijection, this shows that the

set Z is countable.
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Countable Set

Example: Prove the set of positive ratio-

nal numbers is countable.

Solution: While we will not give an ex-

plicit bijective function from Z+ to Q+, we

will show how to list the positive rationals

as a sequence {r1, r2, r3, . . .}. First we ar-

range the rationals in an infinite grid as

shown below, where the ith row contains

the sequence {1
i ,

2
i ,

3
i , . . .}
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1

1

2

1

3

1

4

1

5

1
· · ·

1

2

2

2

3

2

4

2

5

2
· · ·

1

3

2

3

3

3

4

3

5

3
· · ·

1

4

2

4

3

4

4

4

5

4
· · ·

1

5

2

5

3

5

4

5

5

5
· · ·

...



We first list the positive rational numbers

p/q with p + q = 2, followed by those with

p+ q = 3, followed by those with p+ q = 4,

and so on, following the path shown above.

Whenever we encounter a number p/q that

is already listed (e.g. 2/2), we do not list

it again.

Since Q+ can be represented as a sequence,

it is a countable set.



Uncountable Set

Example: Prove the set of real numbers

is uncountable.

Solution: The proof relies on a Cantor

diagonalization argument. Assume for

the sake of contradiction that R is count-

able. Then, the subset (0,1) must also be

countable and can be represented as se-

quence of numbers

r1 = 0. d11 d12 d13 d14 . . .

r2 = 0. d21 d22 d23 d24 . . .

r3 = 0. d31 d32 d33 d34 . . .

r4 = 0. d41 d42 d43 d44 . . .

...
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Then, form a new real number with dec-

imal expansion r = 0.d1 d2 d3 d4 . . ., where

the decimal digits are determined by the

following rule:

di =
{

4 if dii 6= 4

5 if dii = 4

Therefore, the real number r is not equal to

any of the numbers {r1, r2, r3, . . .} because

the decimal expansion of r differs from the

decimal expansion of ri in the ith place to

the right of the decimal point, for each i.

Because there is a real number r between 0

and 1 that is not in the list, the assumption

that all the real numbers between 0 and 1

could be listed must be false. Therefore,

all the real numbers between 0 and 1 can-

not be listed, so the set of real numbers

between 0 and 1 is uncountable.



Countable Set

Theorem: If A and B are countable sets,

then A ∪B is also countable.
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Countable Set

Example: Prove the set of positive inte-

gers not divisible by 4 is a countable set.
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