Delay-induced uncertainty: Mathematics and physiological implications

William Ott (with D. Albers, G. Hripcsak, and B. Karamched)

University of Houston

Special Session on Dynamical Systems and Ergodic Theory

AMS Fall Western Sectional Meeting November 2019

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Take-home messages

Shear-induced uncertainty

SIU in glucose-insulin dynamics

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Future work

Outline

Take-home messages

Shear-induced uncertainty

SIU in glucose-insulin dynamics

Future work

Motivation

Successful medical intervention requires reliable prediction.

- Uncertainty about exact patient state
- Uncertainty about the intervention itself
- Sensitivity of treatment to timing
- Repeatability of treatment outcomes
- If prediction reliability fails for a physiological system:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Mechanisms?
- Mathematical characterization?
- Clinial impact?
- Mitigation?

Take-home messages

Prediction reliability can fail for the glucose-insulin system.

- Induced by delay
- Precisely characterized by shear-induced uncertainty (SIU) theory

SIU is subtle:

- May or may not occur in a given physiological setting
- Difficult to detect
- Renders mysterious the reasons for treatment failure (interpretability)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Take-home messages

Shear-induced uncertainty

SIU in glucose-insulin dynamics

Future work

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

SIU recipe

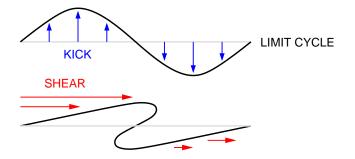
Ingredients:

- 1. Weakly stable invariant dynamical structure (e.g. limit cycle)
- 2. Shear
- 3. External forcing
- 4. Interaction between external forcing and shear

Results:

- 1. Temporally-persistent dynamical instability (positive Lyapunov exponent)
- 2. Complex attractors
- 3. Genuine nonuniformly hyperbolic dynamics
- 4. Strong statistical properties (e.g. large deviations principle, exponential decay of correlations)

Linear shear flow - geometry



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Phase space: $(heta,z)\in\mathbb{S}^1 imes\mathbb{R}$ Intrinsic system

$$\begin{cases} \frac{d\theta}{dt} = 1 + \sigma z \\ \frac{dz}{dt} = -\lambda z \end{cases}$$

Forced system

$$\begin{cases} \frac{d\theta}{dt} = 1 + \sigma z \\ \frac{dz}{dt} = -\lambda z + \alpha \Phi(\theta) \sum_{n=0}^{\infty} \delta(t - nT) \end{cases}$$

 σ : shear λ : contraction α : kick amplitude T: relaxation time Key diagnostic $\frac{\sigma \alpha}{\lambda} = \frac{(\text{shear})(\text{kick amplitude})}{(\text{contraction})}$

$$\begin{cases} \frac{d\theta}{dt} = 1 + \sigma z \\ \frac{dz}{dt} = -\lambda z + \alpha \Phi(\theta) \sum_{n=0}^{\infty} \delta(t - nT) \end{cases}$$

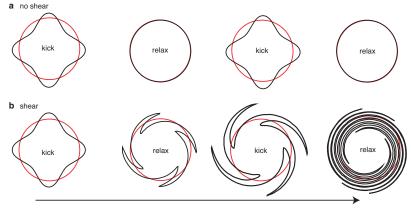
Properties of the time-T map H_T

- 1. $\frac{\sigma \alpha}{\lambda}$ small: invariant curve (diffeomorphic to \mathbb{S}^1) attracts every trajectory
- 2. $\frac{\sigma \alpha}{\lambda}$ large: SIU for a set of *T*-values of positive Lebesgue measure (Wang/Young 2003)

Analyze the ' $T \rightarrow \infty$ ' singular limit:

$$g_{a}(\theta) := \lim_{k \to \infty} H_{k+a}(\alpha \Phi(\theta))$$
$$g_{a}(\theta) = \theta + a + \frac{\sigma \alpha}{\lambda} \Phi(\theta)$$

Kick-relax cycle



time

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Shear quantification in nonlinear oscillatory systems

- 2D simple mechanical systems (Wang/Young 2002)
- Hopf limit cycles (Wang/Young 2003)
- ▶ Limit cycles in dimension *N* (Ott/Stenlund 2010)
 - Introduce shear integrals
- Hopf bifurcations for parabolic PDEs (Lu/Wang/Young 2013)

If delay is present?

Outline

Take-home messages

Shear-induced uncertainty

SIU in glucose-insulin dynamics

Future work

Ultradian model

$$\begin{cases} \frac{dI_p}{dt} = f_1(G) - E\left(\frac{I_p}{V_p} - \frac{I_i}{V_i}\right) - \frac{I_p}{t_p} \\ \frac{dI_i}{dt} = E\left(\frac{I_p}{V_p} - \frac{I_i}{V_i}\right) - \frac{I_i}{t_i} \\ \frac{dG}{dt} = f_4(h_3) + I_G(t) - f_2(G) - f_3(I_i)G \\ \begin{cases} \frac{dh_1}{dt} = \frac{1}{t_d}(I_p - h_1) \\ \frac{dh_2}{dt} = \frac{1}{t_d}(h_1 - h_2) \\ \frac{dh_3}{dt} = \frac{1}{t_d}(h_2 - h_3) \end{cases}$$

 $I_G(t)$: Nutritional drive t_d : Delay timescale

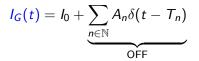
(日)、(型)、(E)、(E)、(E)、(O)へ(C)

Nutritional drive

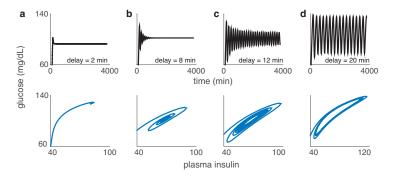
$$I_G(t) = I_0 + \sum_{n \in \mathbb{N}} A_n \delta(t - T_n)$$

- ► *I*₀: Basal nutritional input
- \triangleright A_n : Carbohydrate content of meal n
- \blacktriangleright T_n : Time of meal n

Delay-induced supercritical Hopf bifurcation (No kicks!)



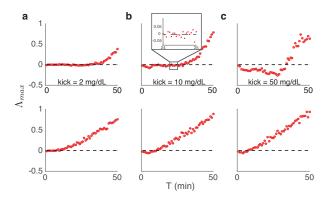
Increasing t_d produces oscillations



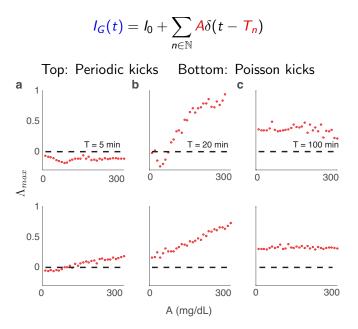
Top Lyapunov exponent indicates SIU emergence

$$I_G(t) = I_0 + \sum_{n \in \mathbb{N}} A\delta(t - T_n)$$

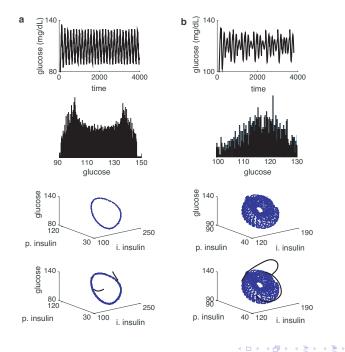
Top: Periodic kicks ($T_n = nT$) Bottom: Poisson kicks ($T_{n+1} - T_n$ IID exponential with mean T)



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで



 $\mathcal{O}\mathcal{A}\mathcal{O}$

æ

Outline

Take-home messages

Shear-induced uncertainty

SIU in glucose-insulin dynamics

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Future work

Future work

Modeling

- Complex drives
- Insulin kicks
- Control protocols
- Anchor to data!
- Rigorous SIU theory for delay systems
 - Fixed delay
 - Random (distributed) delay
- Implications of stochasticity in the delay?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @