Exam 1: Math 1431 Fall 2017 Professor William Ott

Exercise 1. (15; 5 each) Determine if each of the following statements is true or false.

- (a) If f is continuous at a, then f is differentiable at a.
- (b) The limit

exists.

(c) If f and g are functions such that f'(x) = g'(x) for all real x, then f and g must be the same function.

 $\lim_{x \to 0} \frac{x^2}{|x|}$

Exercise 2. (40; 10 each) Differentiate each of the following.

(a)
$$f(x) = x^2 e^x$$

(b) $g(x) = \ln(\cos(7x))$

(c)
$$h(x) = \frac{\sqrt{x}}{1+\sin^2(x)}$$

(d)
$$y = e^{x^2} + 5x^{4/3} - 11\pi$$

Exercise 3. (10) Find the equation of the tangent line to the graph of $y = x + \frac{2}{x}$ at the point (2,3).

Exercise 4. (10) Find the horizontal and vertical asymptotes of the function f defined by

$$f(x) = \frac{7x + 15}{x^2 - 5x + 4}.$$

Exercise 5. (10) Use the intermediate value theorem to show that the equation $e^x = 3 - 2x$ has a solution in the interval (0, 1).

Exercise 6. (10) Find the values of c and d for which the function

$$g(x) = \begin{cases} 4x, & \text{if } x < 2; \\ cx^2 + d, & \text{if } x \ge 2 \end{cases}$$

is differentiable at x = 2.

Exercise 7. (10) Suppose that two functions f(x) and g(x) are differentiable at a. Use the limit definition of the derivative to prove that the derivative of the product fg at a is given by

$$(fg)'(a) = f(a)g'(a) + f'(a)g(a).$$

Exercise 8. (Bonus 10) Define the function f by

$$f(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right), & \text{if } x \neq 0; \\ 0, & \text{if } x = 0. \end{cases}$$

Is f differentiable at x = 0? If no, explain why not. If yes, find f'(0) and justify your answer.