Exam 1: Math 1431 Fall 2017
 Professor William Ott

Exercise 1. (15; 5 each) Determine if each of the following statements is true or false.
(a) If f is continuous at a, then f is differentiable at a.
(b) The limit

$$
\lim _{x \rightarrow 0} \frac{x^{2}}{|x|}
$$

exists.
(c) If f and g are functions such that $f^{\prime}(x)=g^{\prime}(x)$ for all real x, then f and g must be the same function.

Exercise 2. (40; 10 each) Differentiate each of the following.
(a) $f(x)=x^{2} e^{x}$
(b) $g(x)=\ln (\cos (7 x))$
(c) $h(x)=\frac{\sqrt{x}}{1+\sin ^{2}(x)}$
(d) $y=e^{x^{2}}+5 x^{4 / 3}-11 \pi$

Exercise 3. (10) Find the equation of the tangent line to the graph of $y=x+\frac{2}{x}$ at the point $(2,3)$.
Exercise 4. (10) Find the horizontal and vertical asymptotes of the function f defined by

$$
f(x)=\frac{7 x+15}{x^{2}-5 x+4}
$$

Exercise 5. (10) Use the intermediate value theorem to show that the equation $e^{x}=3-2 x$ has a solution in the interval $(0,1)$.

Exercise 6. (10) Find the values of c and d for which the function

$$
g(x)= \begin{cases}4 x, & \text { if } x<2 \\ c x^{2}+d, & \text { if } x \geqslant 2\end{cases}
$$

is differentiable at $x=2$.
Exercise 7. (10) Suppose that two functions $f(x)$ and $g(x)$ are differentiable at a. Use the limit definition of the derivative to prove that the derivative of the product $f g$ at a is given by

$$
(f g)^{\prime}(a)=f(a) g^{\prime}(a)+f^{\prime}(a) g(a)
$$

Exercise 8. (Bonus 10) Define the function f by

$$
f(x)= \begin{cases}x^{2} \sin \left(\frac{1}{x}\right), & \text { if } x \neq 0 \\ 0, & \text { if } x=0\end{cases}
$$

Is f differentiable at $x=0$? If no, explain why not. If yes, find $f^{\prime}(0)$ and justify your answer.

