## Math 4320 Fall 2017: Exam 1 Review Professor William Ott

Exam 1 will cover the material in Sections 1.2-1.4, 1.5 (only tail probabilities), 2.1, 2.3.2, and 3.1-3.4 of An Introduction to Stochastic Modeling (Edition 4) by Pinsky and Karlin. Possible exercise types include true/false questions, statements of definitions and major results, computational exercises, and exercises requiring theoretical arguments. At least one of the exercises from Section 6 and at least one of the theoretical arguments in Section 5 will appear on Exam 1.

## 1. Definitions

You should be able to define and use the following.
(1) Sample space
(2) Events, independent events
(3) Random variables
(a) Distribution function of a random variable
(b) Probability mass function of a discrete random variable
(c) Probability density function of a continuous random variable
(d) Expected value
(e) Variance, second moment
(4) Joint distribution function of a pair $(X, Y)$ of random variables
(5) Independence of random variables
(6) Conditional probability of one event given a second event
(7) Conditional probability mass function
(8) Conditional expectation
(9) Random sum
(10) Discrete-time Markov chains, transition probability matrices

## 2. Distributions

(1) Discrete distributions: Bernoulli, binomial, geometric, Poisson
(2) Continuous distributions: uniform, exponential, normal

## 3. Computational techniques

(1) Law of total probability
(2) Use of tail probabilities to compute probabilities and expected values (see Section 1.5.1)
(3) Conditioning in the discrete case: conditional probability mass functions and the law of total probability (see Section 2.1). Conditioning is used to compute marginal distributions.
(4) Properties of $E[\cdot]$ and $\operatorname{Var}[\cdot]$
(a) For any random variables $X, Y$ and any scalars $a, b, E[a X+b Y]=a E[X]+b E[Y]$.
(b) For independent random variables $X$ and $Y, \operatorname{Var}[X+Y]=\operatorname{Var}[X]+\operatorname{Var}[Y]$.
(5) Use transition probability matrices to compute probabilities of events for discrete-time Markov chains.
(6) If the row vector $\boldsymbol{x}$ is the initial probability distribution of a Markov chain, then $x \mathrm{P}^{n}$ is the probability distribution after $n$ steps. Here P is the transition matrix of the Markov chain.
(7) First-step analysis

## 4. Theoretical results

You should know and be able to apply the following.
(1) Theorem 3.1

## 5. Proofs/DERIVATIONS

(1) Derive the formula for the expected value of a random sum (see pg. 60).
(2) Prove Theorem 3.1. The proof is the three-line computation on pg. 84.

## 6. SUGGESTED PROBLEMS

Please study the solutions to Assignments 1-4. Focus on the exercises that are not too long for an exam setting and on the problems that are not too difficult for an exam setting.

