Exam 1: Math 4320 Fall 2017

Professor William Ott
(1) (Points: 20 total, 5 each) Determine if each of the following is true or false.
(a) For any two events A and B, we have $\operatorname{Pr}(A \cup B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)$.
(b) For any random variables X and Y, we have $\operatorname{Var}[X+Y]=\operatorname{Var}[X]+\operatorname{Var}[Y]$.
(c) For any random variable X and any real number a, we have $\operatorname{Var}[a X]=a^{2} \operatorname{Var}[X]$.
(d) If X is a discrete random variable that can take finitely many values, then $E[X \mid X]=X$.
(2) (Points: 20 total, 5 each) Suppose that a Markov chain $X_{0}, X_{1}, X_{2}, X_{3}, \ldots$ on states $0,1,2$ has the transition probability matrix

$$
P=\left(\begin{array}{lll}
0.15 & 0.25 & 0.6 \\
0.05 & 0.75 & 0.2 \\
0.35 & 0.55 & 0.1
\end{array}\right)
$$

Write expressions for the following probabilities in terms of the entries of P. You do not need to simplify your answers - no numerical computations are needed.
(a) $\operatorname{Pr}\left(X_{1}=2 \mid X_{0}=0\right)$
(b) $\operatorname{Pr}\left(X_{2}=2 \mid X_{0}=0\right)$
(c) $\operatorname{Pr}\left(X_{1}=2\right)$ [Assuming the initial distribution is $\operatorname{Pr}\left(X_{0}=0\right)=0.4$ and $\operatorname{Pr}\left(X_{0}=1\right)=0.6$.]
(d) $\operatorname{Pr}\left(X_{0}=0 \mid X_{1}=2\right)$ [Assume the same initial distribution.]
(3) (Points: 10) Suppose that a Markov chain $X_{0}, X_{1}, X_{2}, X_{3}, \ldots$ on states $0,1,2$ has the transition probability matrix

$$
P=\left(\begin{array}{ccc}
0.2 & 0.3 & 0.5 \\
0.1 & 0.8 & 0.1 \\
0 & 0 & 1
\end{array}\right)
$$

Let $T=\min \left\{n \geqslant 0: X_{n}=2\right\}$ denote the absorption time. Write down a system of first-step equations that we would use to solve for $E\left[T \mid X_{0}=1\right]$. You do not need to solve the equations.
(4) (Points: 10) Show that the n-step transition probabilities of a Markov chain satisfy

$$
P_{i j}^{(n)}=\sum_{k=0}^{\infty} P_{i k} P_{k j}^{(n-1)} .
$$

(5) (Points: 10) Suppose the random variables X and Y are independent and suppose that both are exponentially distributed with parameter $\lambda>0$. Recall that the probability density function for the exponential distribution is given by

$$
f(t)= \begin{cases}0, & \text { if } t<0 \\ \lambda e^{-\lambda t}, & \text { if } t \geqslant 0\end{cases}
$$

Find the probability density function for $Z=X+Y$. Hint: perform a convolution.
(6) (Points: 10) Suppose X is a binomial random variable with parameters p (probability of success) and N (number of trials). Suppose N has a Poisson distribution with parameter λ. Write down a formula for $\operatorname{Pr}(X=k)$. You do not need to simplify your formula.
(7) (Points: 10) Suppose we roll a 6 -sided die (with faces labeled $1,2,3,4,5$, and 6) repeatedly. Let X_{n} denote the largest value that appears in the first n rolls. Then X_{n} is a Markov chain. Write down the transition probability matrix for this Markov chain.

