Exam 2: Math 4320 Fall 2017 Professor William Ott

(1) (Points: 20 total, 5 each) Determine if each of the following is true or false.
(a) Let $\{X(t): t \geqslant 0\}$ be a Poisson process with rate parameter $\lambda>0$. For any two times s and t satisfying $0<s<t$, the random variables $X(s)$ and $X(t)$ are independent.
(b) Consider the random walk on the integers wherein the probability of jumping to the right is p and the probability of jumping to the left is $q=1-p$. If $p \neq \frac{1}{2}$, then state 0 is transient.
(c) The transition probability matrix

$$
\mathrm{P}=\left(\begin{array}{cccc}
0.2 & 0.3 & 0.4 & 0.1 \\
0 & 0.5 & 0.25 & 0.25 \\
0 & 0 & 0.8 & 0.2 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

is regular.
(d) Let $\left\{X_{n}\right\}$ be a branching process that is generated by the offspring random variable ξ. If $E[\xi]=1$, then the extinction probability u_{∞} satisfies $u_{\infty}=1$.
(2) (Points: 10) We have two urns that, between them, contain a total of 4 balls. At each step, one of the 4 balls is chosen at random and then moved from the urn it is in to the other urn. Let X_{n} denote the number of balls in the first urn after the $n^{\text {th }}$ step. Write down the transition matrix for this Markov chain.
(3) (Points: 15 total, 5 each) Suppose that

$$
\mathrm{P}=\left(\begin{array}{lll}
a_{00} & a_{01} & a_{02} \\
a_{10} & a_{11} & a_{12} \\
a_{20} & a_{21} & a_{22}
\end{array}\right)
$$

is a regular transition probability matrix for a Markov chain on states $0,1,2$. Let $\pi=\left(\pi_{0}, \pi_{1}, \pi_{2}\right)$ denote the limiting distribution. Express the following in terms of the entries of π and P.
(a) In the long run, what fraction of time does the Markov chain spend in state 2?
(b) $\lim _{n \rightarrow \infty} \operatorname{Pr}\left\{X_{n}=1 \mid X_{n+1}=0\right\}$. Hint: Bayes formula.
(c) In the long run, what fraction of transitions move from state 1 to state 2?
(4) (Points: 10) Suppose ξ_{1}, ξ_{2}, \ldots represent successive bids (independent, identically distributed bids) on a certain asset that is on sale. Let $X_{n}=\max \left\{\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right\}$ be the maximum that has been bid through stage n. Suppose that the accepted bid is the first bid that meets or exceeds a prescribed level M. The time of sale is the random variable $T=\min \left\{n \geqslant 1: X_{n} \geqslant M\right\}$. Write down a first-step equation for $\mu=E[T]$ in terms of $\operatorname{Pr}\left\{\xi_{1}<M\right\}$.
(5) (Points: 10, 5 each) Let $\{X(t): t \geqslant 0\}$ be a Poisson process of rate $\lambda>0$, where t is measured in hours.
(a) What is the probability that 5 events occur within the first 3 hours and 8 events occur within the first 4 hours?
(b) Assuming $X(t)=1$, what is the conditional probability that the first event occurs within the time interval ($0, \frac{t}{4}$]?
(6) (Points: 10) Shocks occur to a system according to a Poisson process of rate $\lambda>0$. Suppose that the system survives each shock with probability α, independently of other shocks, so that its probability of surviving k shocks is α^{k}. What is the probability that the system is surviving at time $t>0$?
(7) (Points: 10) Consider the random walk $\left\{X_{n}\right\}$ on the integers, where the probability of jumping to the right is $\frac{1}{2}$ and the probability of jumping to the left is also $\frac{1}{2}$. Prove that state 0 is recurrent. You may
find the Stirling formula useful:

$$
n!\sim n^{n} e^{-n}(2 \pi n)^{1 / 2}
$$

as $n \rightarrow \infty$.

