Exam 3: Math 4320 Fall 2017

Professor William Ott
(1) (Points: 20 total, 5 each) Determine if each of the following is true or false.
(a) If $\{B(t): t \geqslant 0\}$ is standard Brownian motion and c is any positive constant, then $\{c B(t / c): t \geqslant$ $0\}$ is standard Brownian motion as well.
(b) Let $\{B(t): t \geqslant 0\}$ denote standard Brownian motion. For any times $0 \leqslant t_{1}<t_{2}<t_{3}<t_{4}$, we have $\operatorname{Cov}\left[B\left(t_{4}\right)-B\left(t_{3}\right), B\left(t_{2}\right)-B\left(t_{1}\right)\right]=0$.
(c) Let $\{X(t): t \geqslant 0\}$ be a Poisson process with rate parameter $\lambda>0$. Then $\operatorname{Pr}\{X(5)=7 / 2\}=0$.
(d) Let $\{X(t): t \geqslant 0\}$ be a Poisson process with rate parameter $\lambda>0$. Assuming it is known that $X(T)=1$ for some positive time T, then W_{1}, the time of the first event, has conditional PDF $f(t)=\lambda e^{-\lambda t}(t \geqslant 0)$.
(2) (Points: 30 total, 5 each) Let $\{X(t): t \geqslant 0\}$ be a Poisson process with rate parameter λ.
(a) Find $\operatorname{Pr}\{X(7)=3\}$.
(b) Find $\operatorname{Pr}\{X(7)=3 \mid X(2)=1\}$.
(c) Find $\operatorname{Pr}\{X(2)=1$ and $X(7)=3\}$.
(d) Let W_{1} denote the time of the first event. Find $\operatorname{Pr}\left\{a \leqslant W_{1} \leqslant b\right\}$, where $0 \leqslant a<b$ are two times.
(e) Find $\operatorname{Pr}\left\{W_{1} \leqslant 10 \mid X(50)=1\right\}$.
(f) Let W_{1} and W_{2} denote the times of the first and second events, respectively. Find $\operatorname{Pr}\left\{W_{1} \leqslant\right.$ 1 and $\left.W_{2} \leqslant 1 \mid X(3)=2\right\}$.
(3) (Points: 10) Consider a three-dimensional spatial Poisson process (points in space) with intensity parameter ν. Let D denote the distance between a given particle and its nearest neighbor. For $r>0$, find $\operatorname{Pr}\{D \leqslant r\}$. You may use the fact that the volume of a sphere of radius r is $\frac{4}{3} \pi r^{3}$. Hint: For any event A, $\operatorname{Pr}(A)=1-\operatorname{Pr}\left(A^{C}\right)$, where A^{C} denotes the complement of A.
(4) (Points: 10) Professor Ott walks along the x-axis in search of his favorite sports bar, which is located at $x=4$. He starts walking from $x=0$ at time zero. Because he has eaten a substantial number of Starburst candy chews, his motion is described by standard Brownian motion $\{B(t): t \geqslant 0\}$. Use the reflection principle to write down an integral for the probability that Professor Ott reaches the sports bar during the first 9 time units of his walk. You do not need to evaluate the integral.
(5) (Points: 10,5 each) Let $\{X(t): t \geqslant 0\}$ be a Poisson process with rate parameter λ and let W_{1} denote the time of the first event. We will find the conditional PDF for W_{1} assuming $X(T)=1$.
(a) For $0 \leqslant s \leqslant T$, let $F(s)=\operatorname{Pr}\left\{W_{1} \leqslant s \mid X(T)=1\right\}$. Find $F(s)$.
(b) Differentiate $F(s)$. (This gives the conditional PDF for W_{1} assuming $X(T)=1$.
(6) (Points: 10) Shocks occur to a system according to a Poisson process of rate $\lambda>0$. Suppose that the system survives each shock with probability α, independently of other shocks, so that its probability of surviving k shocks is α^{k}. What is the probability that the system is surviving at time $t>0$? Hint: law of total probability.

