Exam 3: Math 4320 Fall 2017 Professor William Ott

- (1) (Points: 20 total, 5 each) Determine if each of the following is true or false.
 - (a) If $\{B(t) : t \ge 0\}$ is standard Brownian motion and c is any positive constant, then $\{cB(t/c) : t \ge 0\}$ is standard Brownian motion as well.
 - (b) Let $\{B(t) : t \ge 0\}$ denote standard Brownian motion. For any times $0 \le t_1 < t_2 < t_3 < t_4$, we have $Cov[B(t_4) B(t_3), B(t_2) B(t_1)] = 0$.
 - (c) Let $\{X(t): t \ge 0\}$ be a Poisson process with rate parameter $\lambda > 0$. Then $\Pr\{X(5) = 7/2\} = 0$.
 - (d) Let $\{X(t) : t \ge 0\}$ be a Poisson process with rate parameter $\lambda > 0$. Assuming it is known that X(T) = 1 for some positive time T, then W_1 , the time of the first event, has conditional PDF $f(t) = \lambda e^{-\lambda t}$ $(t \ge 0)$.
- (2) (Points: 30 total, 5 each) Let $\{X(t) : t \ge 0\}$ be a Poisson process with rate parameter λ .
 - (a) Find $\Pr\{X(7) = 3\}$.
 - (b) Find $\Pr\{X(7) = 3 | X(2) = 1\}$.
 - (c) Find $\Pr\{X(2) = 1 \text{ and } X(7) = 3\}.$
 - (d) Let W_1 denote the time of the first event. Find $\Pr\{a \leq W_1 \leq b\}$, where $0 \leq a < b$ are two times.
 - (e) Find $\Pr\{W_1 \leq 10 | X(50) = 1\}$.
 - (f) Let W_1 and W_2 denote the times of the first and second events, respectively. Find $\Pr\{W_1 \leq 1 \text{ and } W_2 \leq 1 | X(3) = 2\}$.

(3) (Points: 10) Consider a three-dimensional spatial Poisson process (points in space) with intensity parameter ν . Let D denote the distance between a given particle and its nearest neighbor. For r > 0, find $\Pr\{D \leq r\}$. You may use the fact that the volume of a sphere of radius r is $\frac{4}{3}\pi r^3$. Hint: For any event A, $\Pr(A) = 1 - \Pr(A^C)$, where A^C denotes the complement of A.

(4) (Points: 10) Professor Ott walks along the x-axis in search of his favorite sports bar, which is located at x = 4. He starts walking from x = 0 at time zero. Because he has eaten a substantial number of Starburst candy chews, his motion is described by standard Brownian motion $\{B(t) : t \ge 0\}$. Use the reflection principle to write down an integral for the probability that Professor Ott reaches the sports bar during the first 9 time units of his walk. You do not need to evaluate the integral.

(5) (Points: 10, 5 each) Let $\{X(t) : t \ge 0\}$ be a Poisson process with rate parameter λ and let W_1 denote the time of the first event. We will find the conditional PDF for W_1 assuming X(T) = 1.

- (a) For $0 \leq s \leq T$, let $F(s) = \Pr\{W_1 \leq s | X(T) = 1\}$. Find F(s).
- (b) Differentiate F(s). (This gives the conditional PDF for W_1 assuming X(T) = 1.

(6) (Points: 10) Shocks occur to a system according to a Poisson process of rate $\lambda > 0$. Suppose that the system survives each shock with probability α , independently of other shocks, so that its probability of surviving k shocks is α^k . What is the probability that the system is surviving at time t > 0? Hint: law of total probability.