Exam 1: Math 3325 Fall 2019
 Professor William Ott

Exercise 1. (10, 5 each) Determine if each of the following statements is true or false.
(a) Every nonempty subset of \mathbb{N} has a least element.
(b) If a, b, and c are integers such that $a \neq 0$ and a divides $b c$, then a divides b or a divides c.

Exercise 2. (10) Let m be an integer. Prove that if m^{2} is even, then m is even.
Exercise 3. (10, 5 each) Carefully define the following.
(a) The nonzero integers a and b are relatively prime.
(b) The natural number d is the greatest common divisor of the nonzero integers a and b.

Exercise 4. (10) Let a, b, and c be positive integers. Prove that $a c$ divides $b c$ if and only if a divides b.
Exercise 5. (10) Prove by contradiction that if n is a natural number, then

$$
\frac{n}{n+1}<\frac{n+1}{n+2} .
$$

(This inequality is known as a 'baseball inequality'.)
Exercise 6. (10) Let a, b, and p be integers. Prove that if p is prime and p divides $a b$, then p divides a or p divides b. (This result is known as Euclid's lemma.)

Exercise 7. (15) For nonzero integers a and b, the integer n is called a common multiple of a and b if and only if a divides n and b divides n. We say the positive integer m is the least common multiple of a and b if and only if
(1) m is a common multiple of a and b, and
(2) if n is a positive common multiple of a and b, then $m \leqslant n$.
(a) (5) Find the least common multiple of 6 and 14.
(b) (10) Let a and b be natural numbers and let m be their least common multiple. Prove that $m \leqslant a b$.

