Exam 3: Math 3325 Fall 2019 Professor William Ott

Exercise 1. (10, 5 each) (Definitions)

- (a) Give the definition of a *one-to-one* function $f: A \to B$.
- (b) State what it means for two sets A and B to be **equivalent**, written $A \approx B$. (Here I am referring to equivalence in the sense of cardinality theory.)

Exercise 2. (15, 3 each) Determine if each of the following statements is true or false.

- (a) For every set A, we have $card(A) \leq card(\mathcal{P}(A))$.
- (b) If A is a countably infinite set and $A \subset B$, then B is countably infinite.
- (c) Let $f: A \to B$ and $g: B \to C$ be functions. If $g \circ f: A \to C$ is one-to-one, then f is one-to-one.
- (d) $(0,1) \approx \mathbb{R}$
- (e) If $h : \mathbb{R} \to \mathbb{R}$ is defined by $h(x) = x^2$, then $h^{-1}([16, 25]) = [4, 5]$.

Exercise 3. (15) Define the relation S on $\{2,3,6\}$ by xSy iff x+y>7.

- (a) (3) Draw the directed graph corresponding to S.
- **(b) (4)** Is *S* reflexive?
- (c) (4) Is S symmetric?
- (d) (4) Is S transitive?

For the final three parts, you must either prove your assertion or provide a counterexample.

Exercise 4. (15, 3 each) (Cardinality detection) For each given set A, determine if $card(A) = \aleph_0$ or $card(A) = \mathbf{c}$.

- (a) The set \mathbb{Z} of integers
- (b) The set \mathbb{Q} of rational numbers
- (c) $\{(p,q) \in \mathbb{R} \times \mathbb{R} : p+q=1\}$
- (d) A is a subset of \mathbb{R} for which there exist real numbers c < d such that $(c, d) \subset A$.
- (e) The set of all subsets of \mathbb{N} (the power set of \mathbb{N})

You do not need to prove your assertions.

Exercise 5. (10, 5 each) Define $a : \mathbb{N} \to \mathbb{N}$ by $a_n = 2^n$.

- (a) Is a one-to-one?
- **(b)** Is *a* onto?

You must prove your answer to each question.

Exercise 6. (10) Suppose that $f: A \to B$ and $g: B \to C$ are both onto. Prove that the composition $g \circ f: A \to C$ is onto.

Exercise 7. (10) Let

$$E^+ = \{2k : k \in \mathbb{N}\} = \{2, 4, 6, \ldots\}$$

be the set of positive even integers. Carefully prove that E^+ is a countably infinite set. (In other words, carefully prove that $\operatorname{card}(E^+) = \aleph_0$.)