Exam 3: Math 3325 Fall 2019
 Professor William Ott

Exercise 1. (10, 5 each) (Definitions)
(a) Give the definition of a one-to-one function $f: A \rightarrow B$.
(b) State what it means for two sets A and B to be equivalent, written $A \approx B$. (Here I am referring to equivalence in the sense of cardinality theory.)

Exercise 2. (15, 3 each) Determine if each of the following statements is true or false.
(a) For every set A, we have $\operatorname{card}(A) \leqslant \operatorname{card}(\mathcal{P}(A))$.
(b) If A is a countably infinite set and $A \subset B$, then B is countably infinite.
(c) Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be functions. If $g \circ f: A \rightarrow C$ is one-to-one, then f is one-to-one.
$(\mathbf{d}) \quad(0,1) \approx \mathbb{R}$
(e) If $h: \mathbb{R} \rightarrow \mathbb{R}$ is defined by $h(x)=x^{2}$, then $h^{-1}([16,25])=[4,5]$.

Exercise 3. (15) Define the relation S on $\{2,3,6\}$ by $x S y$ iff $x+y>7$.
(a) (3) Draw the directed graph corresponding to S.
(b) (4) Is S reflexive?
(c) (4) Is S symmetric?
(d) (4) Is S transitive?

For the final three parts, you must either prove your assertion or provide a counterexample.
Exercise 4. (15, 3 each) (Cardinality detection) For each given set A, determine if $\operatorname{card}(A)=\aleph_{0}$ or $\operatorname{card}(A)=c$.
(a) The set \mathbb{Z} of integers
(b) The set \mathbb{Q} of rational numbers
(c) $\{(p, q) \in \mathbb{R} \times \mathbb{R}: p+q=1\}$
(d) A is a subset of \mathbb{R} for which there exist real numbers $c<d$ such that $(c, d) \subset A$.
(e) The set of all subsets of \mathbb{N} (the power set of \mathbb{N})

You do not need to prove your assertions.
Exercise 5. (10, 5 each) Define $a: \mathbb{N} \rightarrow \mathbb{N}$ by $a_{n}=2^{n}$.
(a) Is a one-to-one?
(b) Is a onto?

You must prove your answer to each question.
Exercise 6. (10) Suppose that $f: A \rightarrow B$ and $g: B \rightarrow C$ are both onto. Prove that the composition $g \circ f: A \rightarrow C$ is onto.

Exercise 7. (10) Let

$$
E^{+}=\{2 k: k \in \mathbb{N}\}=\{2,4,6, \ldots\}
$$

be the set of positive even integers. Carefully prove that E^{+}is a countably infinite set. (In other words, carefully prove that $\left.\operatorname{card}\left(E^{+}\right)=\aleph_{0}.\right)$

