Exam 1: Math 6320 Fall 2019 Professor William Ott

Exercise 1. (15) Let X be a set and let \mathcal{M} be a σ -algebra of subsets of X.

- (a) (5) Define: The function $f: X \to \mathbb{R}$ is *measurable*. You may either state the original definition, or provide any condition that is equivalent to the original definition.
- (b) (10) Suppose $f_n : X \to \mathbb{R}$ is measurable for every $n \in \mathbb{N}$. Define the function g on X by $g(x) = \sup_{n \in \mathbb{N}} f_n(x)$. Assuming $g(x) < \infty$ for every $x \in X$, prove that g is measurable.

Exercise 2. (15) Let (X, \mathcal{M}, μ) be a measure space.

- (a) (5) Define: μ is a *measure*.
- (b) (10) Let $(E_n)_{n=1}^{\infty}$ be a sequence of sets in \mathcal{M} satisfying $E_n \subset E_{n+1}$ for every $n \in \mathbb{N}$. Prove that

$$\mu\Big(\bigcup_{i=1}^{\infty} E_i\Big) = \lim_{n \to \infty} \mu(E_n).$$

Exercise 3. (15) Describe the construction of Lebesgue measure m on \mathbb{R} . You do not need to prove anything here. Rather, it suffices the highlight the important components of the construction. Your description should include the definition of the Lebesgue outer measure m^* , the definition of an m^* -measurable set, and a careful statement of the Carathéodory theorem.

Exercise 4. (10) Let $f : [0,1] \to \mathbb{R}$ be a nonnegative function and suppose that f is integrable with respect to Lebesgue measure m. Prove that

$$\lim_{n \to \infty} \int_0^1 \sqrt[n]{f(x)} \, \mathrm{d}m(x) = m(\{x \in [0,1] : f(x) > 0\}).$$

Exercise 5. (15) Let (X, \mathcal{M}, μ) be a measure space.

- (a) (5) State the monotone convergence theorem.
- (b) (10) Let $(f_n : X \to \mathbb{R})$ be a sequence of integrable functions and suppose $f : X \to \mathbb{R}$ is integrable. Prove that if

$$\sum_{n=1}^{\infty} \int_{X} |f_n(x) - f(x)| \,\mathrm{d}\mu(x) < \infty,$$

then $f_n \to f$ almost everywhere.

Exercise 6. (30) Let (X, \mathcal{M}, μ) be a measure space. Suppose $f_n : X \to \mathbb{R}$ is measurable for every $n \in \mathbb{N}$ and suppose $f : X \to \mathbb{R}$ is measurable.

- (a) (5) Define: $f_n \to f$ pointwise almost everywhere.
- (b) (5) Define: $f_n \to f$ in measure.
- (c) (10) Suppose $f_n \to f$ in measure. Does it follow that $f_n \to f$ almost everywhere? Either prove this, or provide a counterexample.
- (d) (10) Prove that if μ is a finite measure and if $f_n \to f$ almost everywhere, then $f_n \to f$ in measure.