Exam 2: Math 6320 Fall 2019 Professor William Ott

Exercise 1. (10, 5 each) Let (X, \mathcal{M}, μ) and (Y, \mathcal{A}, ν) be measure spaces.

- (a) Define the product σ -algebra $\mathcal{M} \otimes \mathcal{A}$.
- (b) Carefully state the Fubini-Tonelli theorem for $f(x, y) : X \times Y \to \mathbb{R}$.

You do not need to prove anything in this problem.

Exercise 2. (10) Let $f : \mathbb{R} \to \mathbb{R}$ be a Lebesgue measurable function. Prove that

$$\int_{\mathbb{R}} |f(x)| \, \mathrm{d}m(x) = \int_{0}^{\infty} m \left\{ x \in \mathbb{R} : |f(x)| \ge t \right\} \, \mathrm{d}m(t)$$

This is known as the layer cake representation of the integral.

Exercise 3. (15) (On relationships between the L^p spaces)

- (a) (10) Let (X, \mathcal{M}, μ) be a measure space with $\mu(X) < \infty$. Suppose $1 \le p < q < \infty$. Prove that if $f \in L^q(X, \mu)$, then $f \in L^p(X, \mu)$.
- (b) (5) Does this result remain true if $\mu(X) = \infty$? If yes, prove it. If no, provide a counterexample.

Exercise 4. (10) Recall that the convolution of two measurable functions $f, g : \mathbb{R} \to \mathbb{R}$ is defined by

$$(f * g)(x) = \int_{\mathbb{R}} f(x - y)g(y) \,\mathrm{d}m(y).$$

Prove that if $f \in L^1(\mathbb{R}, m)$ and $g \in L^1(\mathbb{R}, m)$, then

$$\|f * g\|_1 \leq \|f\|_1 \cdot \|g\|_1$$
.

You only need to prove the estimate. Do not worry about measurability of f * g.

Exercise 5. (15) Let $(f_n)_{n=1}^{\infty}$ be a sequence of functions in $L^2([0,1],m)$. Suppose that $||f_n||_2 \leq 17$ for every $n \in \mathbb{N}$. Let f be an m-measurable function on [0,1] such that $f_n(x) \to f(x)$ for m-a.e. $x \in [0,1]$.

- (a) (5) Prove that $f \in L^2([0,1],m)$ and $||f||_2 \leq 17$.
- (b) (10) Prove that for every $g \in L^2([0,1],m)$, we have

$$\lim_{n \to \infty} \int_{[0,1]} f_n(x) g(x) \, \mathrm{d}m(x) = \int_{[0,1]} f(x) g(x) \, \mathrm{d}m(x).$$

Hint for the second part: Egorov.

Exercise 6. (10, 5 each) Let (X, \mathcal{M}, μ) be a measure space. Let $1 \leq p < \infty$.

- (a) Give the definition of a bounded linear functional $H: L^p(X, \mu) \to \mathbb{R}$.
- (b) State the Riesz representation theorem for bounded linear functionals on $L^p(X,\mu)$.