Exam 3: Math 6320 Fall 2019 Professor William Ott

Exercise 1. (10) Let $f : \mathbb{R} \times [0,1] \to \mathbb{R}$ be an $(m \otimes m)$ -measurable function such that for every $y \in [0,1]$, we have

$$\int_{\mathbb{R}} f^2(x, y) \, \mathrm{d}m(x) \leqslant 1.$$

Prove that there exists a sequence $x_n \to \infty$ such that

$$\int_{[0,1]} f(x_n, y) \,\mathrm{d}m(y) \to 0.$$

Exercise 2. (15) Let $1 \leq p < \infty$ and suppose $f : \mathbb{R} \to \mathbb{R}$ is an element of $L^p(m)$.

(a) (5) For every $\alpha > 0$, prove that the set

$$E_{\alpha}(f) = \{x \in \mathbb{R} : |f(x)| > \alpha\}$$

has finite Lebesgue measure.

(b) (10) Let $1 \leq q \leq 2$. Prove that every $g : \mathbb{R} \to \mathbb{R}$ in $L^q(m)$ can be decomposed as $g = g_1 + g_2$, where $g_1 \in L^1(m)$ and $g_2 \in L^2(m)$. Hint: Use part (a) and select a useful value of α .

Exercise 3. (10) Let $1 \leq p \leq \infty$ and suppose $f : [0, \infty) \to \mathbb{R}$ is an element of $L^p(m)$. Prove that

$$\lim_{n \to \infty} \int_0^\infty f(x) e^{-nx} \,\mathrm{d}m(x) = 0.$$

Exercise 4. (25) This problem introduces you to some elements of dynamical systems and ergodic theory. Let X be a compact metric space and let $T: X \to X$ be a continuous map. Let $\mathcal{M}(X)$ denote the set of Borel probability measures on X. A measure $\mu \in \mathcal{M}(X)$ is said to be T-invariant if $\mu(T^{-1}(E)) = \mu(E)$ for every Borel set E. Let $\mathcal{M}(X,T)$ denote the set of T-invariant Borel probability measures on X. We will prove next semester that $\mathcal{M}(X,T) \neq \emptyset$. This exercise establishes two important structural properties of $\mathcal{M}(X,T)$.

- (a) (5) Prove that if μ and ν are elements of $\mathcal{M}(X,T)$ and if $p \in [0,1]$, then $p\mu + (1-p)\nu \in \mathcal{M}(X,T)$. (This shows that $\mathcal{M}(X,T)$ is a convex set.)
- (b) (10) The ergodic measures in M(X, T) are of particular interest. A measure μ ∈ M(X, T) is said to be ergodic for T if whenever a Borel set A satisfies T⁻¹(A) = A, then μ(A) = 0 or μ(A) = 1. Suppose that μ₁ and μ are members of M(X, T) such that μ₁ ≪ μ and μ is ergodic for T. Prove that μ₁ = μ. Hint: Let f denote the Radon-Nikodym derivative dμ₁/dμ. Define E = {x ∈ X : f(x) < 1}. Prove that</p>

$$\int_{E \setminus T^{-1}E} f \, \mathrm{d}\mu = \int_{T^{-1}E \setminus E} f \, \mathrm{d}\mu.$$

Argue that

$$\mu((T^{-1}E \setminus E) \cup (E \setminus T^{-1}E)) = 0.$$

This implies that $\mu(E) = 0$ or $\mu(E) = 1$ since μ is ergodic (you do not need to prove this implication). Show that we must have $\mu(E) = 0$. A similar argument (that you do not need to give) shows that $\mu(\{x \in X : f(x) > 1\}) = 0$ as well. Conclude that f(x) = 1 for μ -a.e. $x \in X$ and therefore $\mu_1 = \mu$.

(c) (10) An element of $\mathcal{M}(X,T)$ is said to be an extreme point of $\mathcal{M}(X,T)$ if it cannot be written as a non-trivial convex combination of elements of $\mathcal{M}(X,T)$. Let $\mu \in \mathcal{M}(X,T)$. Prove that μ is ergodic for T if and only if μ is an extreme point of $\mathcal{M}(X,T)$. Hint: For the forward implication, use part (b). For the reverse implication, argue by contraposition.