ANALYSIS QUALIFYING EXAMINATION

JANUARY 15, 2020
MATHEMATICS DEPARTMENT
UNIVERSITY OF MARYLAND

Unless otherwise stated, you may appeal to a "well known theorem" in your solution to a problem, but if you do, it is your responsibility to make it clear which theorem you are using and why its use is justified.

Notation: Throughout the exam, D denotes the unit disk in the complex plane and m denotes Lebesgue measure on the real line.

Problem 1.

Let $\left\{f_{n}, n=1, \ldots\right\}$ be a sequence of non-negative Lebesgue measurable functions on a bounded interval $[a, b], a<b$, such that $f_{n} \rightarrow 0 m$-a.e. Use Egorov's theorem to show that there exists an infinite subsequence $\left\{f_{n_{k}}: k=1, \ldots\right\}$ of $\left\{f_{n}: n=1, \ldots\right\}$, such that

$$
\sum_{k=1}^{\infty} f_{n_{k}}<\infty \quad \text { m-a.e. }
$$

Problem 2.

Suppose $f(z)$ is an analytic function on a connected open neighborhood of the closed unit disk and $|f(z)|=1$ whenever $|z|=1$. Find a formula for $f(z)$ (Hint: first consider the case where $f(z)$ has no zeros in the unit disk).

Problem 3.

Let f and $\left\{f_{n}, n=1, \ldots\right\}$ be Lebesgue measurable functions on \mathbb{R} such that $\left\{f, f_{n}, n=1, \ldots\right\} \subset$ $L_{m}^{2020}(\mathbb{R})$. Assume that $\lim _{n \rightarrow \infty} f_{n}=f m$-a.e. Assume also that $\lim _{n \rightarrow \infty}\left\|f_{n}\right\|_{2020}=\|f\|_{2020}$. Prove that $\lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|_{2020}=0$. You may use here the fact that for any $p \geq 1$, we have $|a+b|^{p} \leq 2^{p}\left(|a|^{p}+|b|^{p}\right)$, provided that you can prove it.

Problem 4.

Let $f: D \rightarrow \mathbb{C}$ be an analytic function on the disk with $f(0)=1$, and suppose that

$$
f(D) \subset\{w \mid \operatorname{Re} w>0\}
$$

Prove that

$$
|f(z)| \leq \frac{1+|z|}{1-|z|}
$$

for all $z \in D$.

Problem 5.

Consider the family of functions on $[a, b]$ which satisfy the property that for every $\epsilon>0$ there exists $\delta>0$ such that for every family of (possibly overlapping) intervals $\left(a_{k}, b_{k}\right) \subset[a, b], k=1, \ldots, n$, with $\sum_{k=1}^{n}\left(b_{k}-a_{k}\right)<\delta$, we have $\sum_{k=1}^{n}\left|f\left(b_{k}\right)-f\left(a_{k}\right)\right|<\epsilon$. Prove that this family of functions coincides with the family of Lipschitz continuous functions. (Recall that a function $f:[a, b] \rightarrow \mathbb{R}$ is Lipschitz continuous if there exists $K>0$ for which $|f(x)-f(y)|<K|x-y|$ for all $x, y \in[a, b]$.)

Problem 6.

Fix a complex number $0<|\lambda|<1$. For $n \geq 1$, let

$$
f(z)=(z-1)^{n} e^{z}+\lambda(z+1)^{n}
$$

Show that $f(z)$ has exactly n simple zeros with $\operatorname{Re} z>0$.

