Analysis PhD Qualifying Examination: January 2016

Instructions. Each exercise is worth 10 total points. Please solve 6 of the 10 exercises, subject to the constraint that you must solve at least two of the final four exercises. In the *Graded exercises* area, please clearly list the 6 exercises you wish to have graded. Whenever you provide a counterexample, you must prove that your counterexample works.

Notation and conventions. $\mathcal{F}[\cdot]$ denotes the Fourier transform. Let *m* denote one-dimensional Lebesgue measure. All functions are real-valued unless explicitly stated otherwise. Euclidean spaces and subsets thereof are equipped with Lebesgue measure (unless specifically stated otherwise).

Graded exercises:

Exercise 1. Let (X, \mathcal{M}, μ) be a measure space.

- (a) Prove that if $\mu(X) < \infty$ and if $1 \leq p < q < \infty$, then $L^q(\mu) \subset L^p(\mu)$.
- (b) Is the statement in (a) true if $\mu(X) = \infty$? If yes, prove it. If no, give a counterexample.

Exercise 2. Prove that

$$\lim_{n \to \infty} \int_0^\infty \frac{x^n \cos(x/n)}{(1+x^n)e^x} \,\mathrm{d}x$$

exists and compute it.

Exercise 3. Let $f \in L^1((0,1))$. Define g on (0,1) by

$$g(x) = \int_x^1 \frac{f(t)}{t} \,\mathrm{d}t.$$

Prove that $g \in L^1((0,1))$.

Exercise 4. Fix 1 and let <math>q satisfy 1/p + 1/q = 1. Let $(f_n)_{n=1}^{\infty}$ be a sequence in $L^p([0,1])$ for which there exists K > 0 such that $||f_n||_p \leq K$ for every $n \in \mathbb{N}$. Suppose that there exists a Lebesgue measurable function f on [0,1] such that $f_n(x) \to f(x)$ for m-a.e. $x \in [0,1]$.

- (a) Prove that $f \in L^p([0,1])$ and $||f||_p \leq K$.
- (b) Prove that for every $g \in L^q([0,1])$, we have

$$\lim_{n \to \infty} \int_0^1 f_n(x)g(x) \,\mathrm{d}x = \int_0^1 f(x)g(x) \,\mathrm{d}x.$$

(c) Is the statement in part (b) true if p = 1 and $q = \infty$? If yes, prove it. If no, give a counterexample.

Exercise 5. (On modes of convergence) Let (X, \mathcal{M}, μ) be a measure space. Let $(f_n)_{n=1}^{\infty}$ be a sequence of μ -integrable functions and suppose f is μ -integrable as well.

- (a) Prove that if $f_n \to f$ in the $L^1(\mu)$ sense, then $f_n \to f$ in measure.
- (b) If $\mu(X) < \infty$ and if $f_n \to f$ in measure, does it follow that $f_n \to f$ in the $L^1(\mu)$ sense? Either prove this or give a counterexample.

Exercise 6. (On a property of Lebesgue integrable functions) Let $f \in L^1(\mathbb{R})$.

(a) Fix $\alpha > 0$. For $n \in \mathbb{N}$, define f_n by $f_n(x) = f(nx)/n^{\alpha}$. Show that

$$||f_n||_1 = \int_{\mathbb{R}} \frac{|f(nx)|}{n^{\alpha}} \, \mathrm{d}x = \int_{\mathbb{R}} \frac{|f(z)|}{n^{1+\alpha}} \, \mathrm{d}z = \frac{||f||_1}{n^{1+\alpha}}.$$

(b) Use (a) to show that $f_n(x) \to 0$ as $n \to \infty$ for *m*-a.e. $x \in \mathbb{R}$.

Exercise 7. Let $F \subset \mathbb{R}$ be a closed set of positive measure. For $x \in \mathbb{R}$, define the distance from x to F by

$$d(x,F) = \inf_{z \in F} d(x,z).$$

 $\mathbf{2}$

Prove that for Lebesgue almost every $y \in F$, we have

$$\lim_{x \to y} \frac{d(x,F)}{|x-y|} = 0.$$

Hint: Consider Lebesgue density points of F.

Exercise 8. (On absolute continuity)

- (a) Let a < b be real numbers. Give the definition of an absolutely continuous function $f : [a, b] \to \mathbb{R}$.
- (b) Suppose $f : [a, b] \to \mathbb{R}$ is absolutely continuous. Prove that if A is a Lebesgue measurable subset of [a, b] with m(A) = 0, then m(f(A)) = 0.
- (c) If E is a Lebesgue measurable subset of \mathbb{R} with m(E) = 0, does it follow that

$$\{e^x : x \in E\}$$

has Lebesgue measure zero? Either prove this or give a counterexample.

Exercise 9. (On the Fourier transform) Let $f : \mathbb{R} \to \mathbb{C}$ be Lebesgue integrable. Recall that the Fourier transform of f is defined by

$$\hat{f}(\gamma) = \int_{\mathbb{R}} f(t) e^{-2\pi i \gamma t} \, \mathrm{d}t$$

- (a) Prove that \hat{f} is uniformly continuous on \mathbb{R} .
- (b) Prove that

$$\lim_{\gamma \to \infty} \hat{f}(\gamma) = 0.$$

Hint: First show this for the characteristic function of an interval of finite length. To complete the proof, make a density argument.

Exercise 10. (On weak convergence) Let (f_n) be a sequence of functions in $L^2([0,1])$ that converges weakly to $f \in L^2([0,1])$, meaning that

$$\lim_{n \to \infty} \int_0^1 f_n g \, \mathrm{d}m = \int_0^1 f g \, \mathrm{d}m$$

for every $g \in L^2([0,1])$. Prove that there exists K > 0 such that $||f_n||_{L^2([0,1])} \leq K < \infty$ for every $n \in \mathbb{N}$. Hint: Uniform boundedness principle.