Analysis PhD Qualifying Examination: January 2016

Instructions. Each exercise is worth 10 total points. Please solve 6 of the 10 exercises, subject to the constraint that you must solve at least two of the final four exercises. In the Graded exercises area, please clearly list the 6 exercises you wish to have graded. Whenever you provide a counterexample, you must prove that your counterexample works.
Notation and conventions. $\mathcal{F}[\cdot]$ denotes the Fourier transform. Let m denote one-dimensional Lebesgue measure. All functions are real-valued unless explicitly stated otherwise. Euclidean spaces and subsets thereof are equipped with Lebesgue measure (unless specifically stated otherwise).

Graded exercises:

Exercise 1. Let (X, \mathcal{M}, μ) be a measure space.
(a) Prove that if $\mu(X)<\infty$ and if $1 \leqslant p<q<\infty$, then $L^{q}(\mu) \subset L^{p}(\mu)$.
(b) Is the statement in (a) true if $\mu(X)=\infty$? If yes, prove it. If no, give a counterexample.

Exercise 2. Prove that

$$
\lim _{n \rightarrow \infty} \int_{0}^{\infty} \frac{x^{n} \cos (x / n)}{\left(1+x^{n}\right) e^{x}} \mathrm{~d} x
$$

exists and compute it.
Exercise 3. Let $f \in L^{1}((0,1))$. Define g on $(0,1)$ by

$$
g(x)=\int_{x}^{1} \frac{f(t)}{t} \mathrm{~d} t .
$$

Prove that $g \in L^{1}((0,1))$.
Exercise 4. Fix $1<p<\infty$ and let q satisfy $1 / p+1 / q=1$. Let $\left(f_{n}\right)_{n=1}^{\infty}$ be a sequence in $L^{p}([0,1])$ for which there exists $K>0$ such that $\left\|f_{n}\right\|_{p} \leqslant K$ for every $n \in \mathbb{N}$. Suppose that there exists a Lebesgue measurable function f on $[0,1]$ such that $f_{n}(x) \rightarrow f(x)$ for m-a.e. $x \in[0,1]$.
(a) Prove that $f \in L^{p}([0,1])$ and $\|f\|_{p} \leqslant K$.
(b) Prove that for every $g \in L^{q}([0,1])$, we have

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) g(x) \mathrm{d} x=\int_{0}^{1} f(x) g(x) \mathrm{d} x
$$

(c) Is the statement in part (b) true if $p=1$ and $q=\infty$? If yes, prove it. If no, give a counterexample.

Exercise 5. (On modes of convergence) Let (X, \mathcal{M}, μ) be a measure space. Let $\left(f_{n}\right)_{n=1}^{\infty}$ be a sequence of μ-integrable functions and suppose f is μ-integrable as well.
(a) Prove that if $f_{n} \rightarrow f$ in the $L^{1}(\mu)$ sense, then $f_{n} \rightarrow f$ in measure.
(b) If $\mu(X)<\infty$ and if $f_{n} \rightarrow f$ in measure, does it follow that $f_{n} \rightarrow f$ in the $L^{1}(\mu)$ sense? Either prove this or give a counterexample.

Exercise 6. (On a property of Lebesgue integrable functions) Let $f \in L^{1}(\mathbb{R})$.
(a) Fix $\alpha>0$. For $n \in \mathbb{N}$, define f_{n} by $f_{n}(x)=f(n x) / n^{\alpha}$. Show that

$$
\left\|f_{n}\right\|_{1}=\int_{\mathbb{R}} \frac{|f(n x)|}{n^{\alpha}} \mathrm{d} x=\int_{\mathbb{R}} \frac{|f(z)|}{n^{1+\alpha}} \mathrm{d} z=\frac{\|f\|_{1}}{n^{1+\alpha}} .
$$

(b) Use (a) to show that $f_{n}(x) \rightarrow 0$ as $n \rightarrow \infty$ for m-a.e. $x \in \mathbb{R}$.

Exercise 7. Let $F \subset \mathbb{R}$ be a closed set of positive measure. For $x \in \mathbb{R}$, define the distance from x to F by

$$
d(x, F)=\inf _{z \in F} d(x, z) .
$$

Prove that for Lebesgue almost every $y \in F$, we have

$$
\lim _{x \rightarrow y} \frac{d(x, F)}{|x-y|}=0
$$

Hint: Consider Lebesgue density points of F.
Exercise 8. (On absolute continuity)
(a) Let $a<b$ be real numbers. Give the definition of an absolutely continuous function $f:[a, b] \rightarrow \mathbb{R}$.
(b) Suppose $f:[a, b] \rightarrow \mathbb{R}$ is absolutely continuous. Prove that if A is a Lebesgue measurable subset of $[a, b]$ with $m(A)=0$, then $m(f(A))=0$.
(c) If E is a Lebesgue measurable subset of \mathbb{R} with $m(E)=0$, does it follow that

$$
\left\{e^{x}: x \in E\right\}
$$

has Lebesgue measure zero? Either prove this or give a counterexample.
Exercise 9. (On the Fourier transform) Let $f: \mathbb{R} \rightarrow \mathbb{C}$ be Lebesgue integrable. Recall that the Fourier transform of f is defined by

$$
\hat{f}(\gamma)=\int_{\mathbb{R}} f(t) e^{-2 \pi i \gamma t} \mathrm{~d} t
$$

(a) Prove that \hat{f} is uniformly continuous on \mathbb{R}.
(b) Prove that

$$
\lim _{\gamma \rightarrow \infty} \hat{f}(\gamma)=0
$$

Hint: First show this for the characteristic function of an interval of finite length. To complete the proof, make a density argument.

Exercise 10. (On weak convergence) Let $\left(f_{n}\right)$ be a sequence of functions in $L^{2}([0,1])$ that converges weakly to $f \in L^{2}([0,1])$, meaning that

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n} g \mathrm{~d} m=\int_{0}^{1} f g \mathrm{~d} m
$$

for every $g \in L^{2}([0,1])$. Prove that there exists $K>0$ such that $\left\|f_{n}\right\|_{L^{2}([0,1])} \leqslant K<\infty$ for every $n \in \mathbb{N}$. Hint: Uniform boundedness principle.

