Assignment 3: Math 6321 Spring 2020

Exercise 1. (5.5.55) Let \mathcal{H} be a Hilbert space.

(a) Prove that for every $x, y \in \mathcal{H}$, we have

$$\langle x, y \rangle = \frac{1}{4} (\|x+y\|^2 - \|x-y\|^2 + i \|x+iy\|^2 - i \|x-iy\|^2).$$

This is known as the polarization identity.

(b) Let \mathcal{H}' be another Hilbert space. Prove that a linear map A from \mathcal{H} to \mathcal{H}' is unitary iff A is isometric and surjective.

Exercise 2. (5.5.8) Let \mathcal{M} be a closed subspace of the Hilbert space \mathcal{H} . For $x \in \mathcal{H}$, let Px be the element of \mathcal{M} such that $x - Px \in \mathcal{M}^{\perp}$.

- (a) Prove that $P \in L(\mathcal{H}, \mathcal{H}), P^* = P, P^2 = P, \mathcal{R}(P) = \mathcal{M}$, and $\mathcal{N}(P) = \mathcal{M}^{\perp}$. The operator P is the orthogonal projection onto \mathcal{M} .
- (b) Conversely, suppose that $Q \in L(\mathcal{H}, \mathcal{H})$ satisfies $Q^2 = Q^* = Q$. Prove that $\mathcal{R}(Q)$ is closed and Q is the orthogonal projection onto $\mathcal{R}(Q)$.
- (c) Show that if $\{u_{\alpha}\}$ is an orthonormal basis for \mathcal{M} , then the orthogonal projection P onto \mathcal{M} is given by $Px = \sum_{\alpha} \langle x, u_{\alpha} \rangle u_{\alpha}$.

Exercise 3. (5.5.63) Let \mathcal{H} be an infinite-dimensional Hilbert space.

- (a) Prove that every orthonormal sequence in \mathcal{H} converges weakly to 0.
- (b) Show that the unit sphere $S = \{x \in \mathcal{H} : ||x|| = 1\}$ is weakly dense in the closed unit ball $B = \{x \in \mathcal{H} : ||x|| \leq 1\}$.

Exercise 4. (5.5.67) Let U be a unitary operator on the Hilbert space \mathcal{H} . Let $\mathcal{M} = \{x \in \mathcal{H} : Ux = x\}$ and let P be the orthogonal projection onto \mathcal{M} . Define

$$S_n = \frac{1}{n} \sum_{j=0}^{n-1} U^j.$$

Prove that $S_n \to P$ in the strong operator topology. This result is known as the mean ergodic theorem. You are free to use any result from Exercise 5.5.57 in your proof.

Exercise 5. (5 - Maryland August 2013) (In this problem, you may not appeal to the Birkhoff pointwise ergodic theorem.) Let m denote Lebesgue measure on [0, 1]. Suppose $T : [0, 1] \to [0, 1]$ is a Lebesgue measurable function such that for every measurable set $E \subset [0, 1]$, if $T^{-1}(E) = E$, then either m(E) = 0 or $m([0, 1] \setminus E) = 0$.

- (a) Suppose $f : [0,1] \to \mathbb{R}$ is a Lebesgue measurable function such that f(x) = f(T(x)) for all $x \in [0,1]$. Prove that there exists $c \in \mathbb{R}$ such that $\{x : f(x) = c\}$ has measure 1.
- (b) Suppose also that for every Lebesgue measurable subset E of [0,1] with m(E) > 0, there exists a subset F of [0,1] with $m([0,1] \setminus F) = 0$ such that for every $x \in F$ we have

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \mathbf{1}_E(T^k(x)) = m(E).$$

Given $f:[0,1]\to\mathbb{R}$ bounded and measurable, prove that the sequence $(f_n)_{n=1}^{\infty}$ defined by

$$f_n(x) = \frac{1}{n} \sum_{k=0}^{n-1} f(T^k(x))$$

converges to $\int_0^1 f \, \mathrm{d}m$ in $L^1(m)$.