Divisibility and Modular Arithmetic

Section 4.1

Section Summary 1

Division

Division Algorithm

Modular Arithmetic

Division

Definition: If *a* and *b* are integers with $a \neq 0$, then *a* divides *b* if there exists an integer *c* such that b = ac.

- When a divides b we say that a is a factor or divisor of b and that b is a multiple of a.
- The notation $a \mid b$ denotes that a divides b.
- If a | b, then b/a is an integer.
- If *a* does not divide *b*, we write $a \nmid b$.

Example: Determine whether **3** | **7** and whether **3** | **12**.

Properties of Divisibility

Theorem 1. Let *a*, *b*, and *c* be integers, where $a \neq 0$.

- i. If $a \mid b$ and $a \mid c$, then $a \mid (b + c)$;
- ii. If *a* | *b*, then *a* | *bc* for all integers c;
- iii. If $a \mid b$ and $b \mid c$, then $a \mid c$.

Proof: (i) Suppose $a \mid b$ and $a \mid c$, then it follows that there are integers s and t with b = as and c = at. Hence,

b + c = as + at = a(s + t). Hence, $a \mid (b + c)$

Corollary: If *a*, *b*, and *c* be integers, where $a \neq 0$, such that $a \mid b$ and $a \mid c$, then $a \mid (mb + nc)$ whenever *m* and *n* are integers.

It follows easily from (ii) and (i) of Theorem 1

Note. mb +nc is called a linear combination of b and c.

Division Algorithm

When an integer is divided by a positive integer, there is a quotient and a remainder. This is traditionally called the "Division Algorithm," but is really a theorem. We have proved it for natural numbers using induction. **Division Algorithm**: If *a* is an integer and *d* a positive integer, then there are unique integers q and r, with $0 \le r < d$, such that a = dq + r

Examples:		by 3 is -5 with remainder 2.	
		-13 = 3(-5) + 2 so -36 divided	$r = a \mod a$
•	r is called the <i>remainder</i> .	-13 - 3(-4) + (-1) - 17	
		13 - 3(4) + (1) = 12	q = a div d
٠	<i>q</i> is called the <i>quotient</i> .	r > 0 or r = 0.	
•	<i>a</i> is called the <i>dividend</i> .	While $q < 0$, it must be that	div and mod
		Be careful when a < 0.	Definitions of Functions
•	<i>d</i> is called the <i>divisor</i> .		

- What are the quotient and remainder when 101 is divided by 11?
- **Solution**: The quotient when 101 is divided by 11 is 9 = 101 **div** 11, and the ulletremainder is $2 = 101 \mod 11$.
- What are the quotient and remainder when -11 is divided by 3?
- **Solution**: The quotient when -11 is divided by 3 is -4 = -11 div 3, and the remainder ٠ is $1 = -11 \mod 3$. This is because -11 = 3(-4)+1. While it is true that -11 = 3(-3) - 2, this second observation does not give the correct q and r.

Congruence Relation

Definition: If *a* and *b* are integers and *m* is a positive integer, then *a* is *congruent* to *b* modulo *m* if *m* divides a - b.

- The notation $a \equiv b \pmod{m}$ says that a is congruent to b modulo m.
- We say that $a \equiv b \pmod{m}$ is a *congruence* and that *m* is its *modulus*.
- Two integers are congruent mod *m* if and only if they have the same remainder when divided by *m*.
- If a is not congruent to b modulo m, we write $a \neq b \pmod{m}$

Example: Determine whether 17 is congruent to 5 modulo 6 and whether 24 and 14 are congruent modulo 6.

Solution:

- 17 ≡ 5 (mod 6) because 6 divides 17 5 = 12.
- $24 \not\equiv 14 \pmod{6}$ since 24 14 = 10 is not divisible by 6.

More on Congruences

Theorem 2. Let m be a positive integer. The integers *a* and *b* are congruent modulo *m* if and only if there is an integer *k* such that a = b + km.

Proof:

- If $a \equiv b \pmod{m}$, then (by the definition of congruence) $m \mid a b$. Hence, there is an integer k such that a b = km and equivalently a = b + km.
- Conversely, if there is an integer k such that a = b + km, then km = a b. Hence, $m | (a b) and a \equiv b (mod m)$.

Note: In the text, m | a - b means m | (a - b).

The Relationship between (mod m) and mod m Notations The use of "mod" in $a \equiv b \pmod{m}$ and $a \mod m = b$ are different.

- *a* ≡ *b* (mod *m*) is a relation on the set of integers. This means that m divides *b* - a or equivantly *a* = *b*+*km* for some integer k.
- In *a* **mod** *m* = *b*, the notation **mod** denotes a function.

This means that the remainder is b when a is divided by m. The relationship between these notations is made clear in this next theorem **Theorem 3.** Suppose that each of *a* and *b* is an integer and *m* is a positive integer. Then $a \equiv b \pmod{m}$ if and only if $a \mod m = b \mod m$.

Proof. (\Rightarrow) If $a \equiv b \pmod{m}$ then a - b = km for some integer k. Also $a = q_1m + r_1$ and $b = q_2m + r_2$ where each of q_1 and q_2 is an integer and each of r_1 and r_2 is a nonnegative integer less than m. Thus $a - b = (q_1 - q_2)m + r_1 = r_2$ where $-m < r_1 - r_2 < m$. Since a - b is also km we have $km = (q_1 - q_2)m + r_1 - r_2$ so $(k - (q_1 - q_2))m = r_1 - r_2$. This shows that $r_1 - r_2$ is an integral multiple of m. Since $-m < r_1 - r_2 < m$ it must be that $r_1 - r_2 = 0$ so $r_1 = r_2$. Thus a mod $m = b \mod m$.

(\Leftarrow) If $a \mod m = b \mod m$ then $a \equiv q_1m + r$ and $b \equiv q_2m + r$ where each of q_1 and q_2 is an integer and r is a nonnegative integer less than m. Thus $a - b = (q_1 - q_2)m$. So $a \equiv b \pmod{m}$.

Congruences of Sums and Products

Theorem 4: Let m be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a + c \equiv b + d \pmod{m}$ and $ac \equiv bd \pmod{m}$

Proof:

- Because $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, there is a pair of integers s and t with b = a + sm and d = c + tm.
- Therefore,
 - b + d = (a + sm) + (c + tm) = (a + c) + m(s + t) and
 - b d = (a + sm) (c + tm) = ac + m(at + cs + stm).
- Hence, $a + c \equiv b + d \pmod{m}$ and $ac \equiv bd \pmod{m}$.

Example: Because $7 \equiv 2 \pmod{5}$ and $11 \equiv 1 \pmod{5}$, it follows that

$$18 = 7 + 11 \equiv 2 + 1 = 3 \pmod{5}$$
 and
77 = 7 \cdot 11 \equiv 2 \cdot 1 = 2 (mod 5)

Algebraic Manipulation of Congruences

Multiplying both sides of a valid congruence by an integer preserves congruence.

If $a \equiv b \pmod{m}$ holds then $c \cdot a \equiv c \cdot b \pmod{m}$, where c is any integer

Adding an integer to both sides of a valid congruence preserves validity.

If $a \equiv b \pmod{m}$ holds then $c + a \equiv (c + b) \pmod{m}$, where c is any integer,

Dividing a congruence by an integer does not always produce a valid congruence.

Example: The congruence $14 \equiv 8 \pmod{6}$ holds. But dividing both sides by 2 does not produce a valid congruence since 14/2 = 7 and 8/2 = 4, but $7 \not\equiv 4 \pmod{6}$.

See Section 4.3 for conditions when division is ok.

Computing the **mod** *m* Function of Products and Sums

We use the following corollary to Theorem 4 to compute the remainder of the product or sum of two integers when divided by *m* from the remainders when each is divided by *m*.

Corollary: Let *m* be a positive integer and let *a* and *b* be integers. Then (*a* + *b*) (mod *m*) = ((*a* mod *m*) + (*b* mod *m*)) mod *m* and

 $ab \mod m = ((a \mod m) (b \mod m)) \mod m$.

Arithmetic Modulo *m*¹

Definitions: Let \mathbb{Z}_{m} be the set of nonnegative integers less than m: {0,1, ..., m-1}

- The operation $+_m$ is defined as $a +_m b = (a + b) \mod m$. This is addition modulo m.
- The operation \cdot_m is defined as $a \cdot_m b = (a \cdot b) \mod m$. This is multiplication modulo m.
- Using these operations is said to be doing *arithmetic modulo m*.

Example: Find 7 $+_{11}$ 9 and 7 \cdot_{11} 9.

Solution: Using the definitions above:

• $7 +_{11} 9 = (7 + 9) \mod 11 = 16 \mod 11 = 5$

•
$$7 \cdot_{11} 9 = (7 \cdot 9) \mod 11 = 63 \mod 11 = 8$$

Arithmetic Modulo *m*²

The operations $+_m$ and \cdot_m satisfy many of the same properties as ordinary addition and multiplication.

- *Closure*: If *a* and *b* belong to \mathbf{Z}_m , then a + b and $a \cdot b$ belong to \mathbf{Z}_m .
- Associativity: If a, b, and c belong to \mathbf{Z}_m , then $(a +_m b) +_m c = a +_m (b +_m c)$ and $(a \cdot_m b) \cdot_m c = a \cdot_m (b \cdot_m c)$.
- Commutativity: If a and b belong to Z_m , then $a +_m b = b +_m a$ and $a \cdot_m b = b \cdot_m a$.
- Identity elements: The elements 0 and 1 are identity elements for addition and multiplication modulo m, respectively.
 - If a belongs to \mathbf{Z}_m , then $a +_m 0 = a$ and $a \cdot_m 1 = a$.

Arithmetic Modulo *m*₃

- Additive inverses: If a≠ 0 belongs to Z_m, then m-a is the additive inverse of a modulo m and 0 is its own additive inverse.
 - $a +_m (m a) = 0$ and $0 +_m 0 = 0$
- *Distributivity*: If a, b, and c belong to \mathbf{Z}_m , then

•
$$a \cdot_m (b +_m c) = (a \cdot_m b) +_m (a \cdot_m c)$$
 and $(a +_m b) \cdot_m c = (a \cdot_m c) +_m (b \cdot_m c)$.

Multiplicatative inverses have not been included since they do not always exist. For example, there is no multiplicative inverse of 2 modulo 6.