Divisibility and Modular Arithmetic

Section 4.1

Section Summary ${ }_{1}$

Division
Division Algorithm
Modular Arithmetic

Division

Definition: If a and b are integers with $a \neq 0$, then a divides b if there exists an integer c such that $b=a c$.

- When a divides b we say that a is a factor or divisor of b and that b is a multiple of a.
- The notation $a \mid b$ denotes that a divides b.
- If $a \mid b$, then b / a is an integer.
- If a does not divide b, we write $a \nmid b$.

Example: Determine whether $3 \mid 7$ and whether 3| 12.

Properties of Divisibility

Theorem 1. Let a, b, and c be integers, where $a \neq 0$.
i. If $a \mid b$ and $a \mid c$, then $a \mid(b+c)$;
ii. If $a \mid b$, then $a \mid b c$ for all integers c;
iii. If $a \mid b$ and $b \mid c$, then $a \mid c$.

Proof: (i) Suppose $a \mid b$ and $a \mid c$, then it follows that there are integers s and t with $b=a s$ and $c=a t$. Hence,
$b+c=a s+a t=a(s+t)$. Hence, $a \mid(b+c)$

Corollary: If a, b, and c be integers, where $a \neq 0$, such that $a \mid b$ and $a \mid c$, then $a \mid(m b+n c)$ whenever m and n are integers.

It follows easily from (ii) and (i) of Theorem 1
Note. $\mathrm{mb}+\mathrm{nc}$ is called a linear combination of b and c .

Division Algorithm

When an integer is divided by a positive integer, there is a quotient and a remainder. This is traditionally called the "Division Algorithm," but is really a theorem. We have proved it for natural numbers using induction.
Division Algorithm: If a is an integer and d a positive integer, then there are unique integers q and r, with $0 \leq r<d$, such that $a=d q+r$

- d is called the divisor.
- a is called the dividend. While $\mathrm{q}<0$, it must be that
- q is called the quotient.

```
Be careful when a<0.
While q < 0, it must be that
```

r>0 or r=0.

```
```

```
r>0 or r=0.
```

```
```

-13=3(-4)+(-1)-13
-13=3(-5)+2 so \&s divided

```
- \(r\) is called the remainder.

\section*{Examples:}

Definitions of Functions div and mod
    \(q=a \operatorname{div} d\)
    \(r=a \bmod d\)
- What are the quotient and remainder when 101 is divided by 11 ?
- Solution: The quotient when 101 is divided by 11 is \(9=101\) div 11 , and the remainder is \(2=101 \bmod 11\).
- What are the quotient and remainder when -11 is divided by 3 ?
- Solution: The quotient when -11 is divided by 3 is \(-4=-11 \operatorname{div} 3\), and the remainder is \(1=-11 \bmod 3\). This is because \(-11=3(-4)+1\). While it is true that \(-11=3(-3)-2\), this second observation does not give the correct q and r .

\section*{Congruence Relation}

Definition: If \(a\) and \(b\) are integers and \(m\) is a positive integer, then \(a\) is congruent to \(b\) modulo \(m\) if \(m\) divides \(a-b\).
- The notation \(a \equiv b(\bmod m)\) says that \(a\) is congruent to \(b\) modulo \(m\).
- We say that \(a \equiv b(\bmod m)\) is a congruence and that \(m\) is its modulus.
- Two integers are congruent mod \(m\) if and only if they have the same remainder when divided by \(m\).
- If \(a\) is not congruent to \(b\) modulo \(m\), we write \(a \not \equiv b(\bmod m)\)

Example: Determine whether 17 is congruent to 5 modulo 6 and whether 24 and 14 are congruent modulo 6.

\section*{Solution:}
- \(17 \equiv 5(\bmod 6)\) because 6 divides \(17-5=12\).
- \(24 \not \equiv 14(\bmod 6)\) since \(24-14=10\) is not divisible by 6 .

\section*{More on Congruences}

Theorem 2. Let \(m\) be a positive integer. The integers \(a\) and \(b\) are congruent modulo \(m\) if and only if there is an integer \(k\) such that \(a=b+k m\).

\section*{Proof:}
- If \(a \equiv b(\bmod m)\), then (by the definition of congruence) \(m \mid(a-b\). Hence, there is an integer \(k\) such that \(a-b=k m\) and equivalently \(a=b+k m\).
- Conversely, if there is an integer \(k\) such that \(a=b+\) \(k m\), then \(k m=a-b\). Hence, \(m \mid(a-b)\) and \(a \equiv b\) \((\bmod m)\).

Note: In the text, \(\mathrm{m} \mid \mathrm{a}-\mathrm{b}\) means \(\mathrm{m} \mid(\mathrm{a}-\mathrm{b})\).

\section*{The Relationship between (mod \(m\) ) and mod \(m\) Notations}

The use of " \(\bmod\) " in \(a \equiv b(\bmod m)\) and \(a \bmod m=\) \(b\) are different.
- \(a \equiv b(\bmod m)\) is a relation on the set of integers.

This means that \(m\) divides \(b\) - \(a\) or equivantly \(a=b+k m\) for some integer \(k\).
- In \(a \bmod m=b\), the notation \(\bmod\) denotes a function.

This means that the remainder is \(b\) when \(a\) is divided by \(m\).
The relationship between these notations is made clear in this next theorem

Theorem 3. Suppose that each of \(a\) and \(b\) is an integer and \(m\) is a positive integer. Then \(a \equiv b(\bmod m)\) if and only if \(a \bmod m=b \bmod m\).

Proof. \((\Rightarrow)\) If \(a \equiv b(\bmod m)\) then \(a-b=k m\) for some integer \(k\). Also \(a=q_{1} m+r_{1}\) and \(b=q_{2} m+r_{2}\) where each of \(q_{1}\) and \(q_{2}\) is an integer and each of \(r_{1}\) and \(r_{2}\) is a nonnegative integer less than \(m\). Thus \(a-b=\left(q_{1}-q_{2}\right) m+r_{1}-r_{2}\) where \(-m<r_{1}-r_{2}<m\). Since \(a-b\) is also \(k m\) we have \(k m=\left(q_{1}-q_{2}\right) m+r_{1}-r_{2}\) so \(\left(k-\left(q_{1}-q_{2}\right)\right) m=r_{1}-r_{2}\). This shows that \(r_{1}-r_{2}\) is an integral multiple of \(m\). Since \(-m<r_{1}-r_{2}<m\) it must be that \(r_{1}-r_{2}=0\) so \(r_{1}=r_{2}\). Thus a mod \(m=b \bmod m\).
\((\Leftarrow)\) If \(a \bmod m=b \bmod m\) then \(a=q_{1} m+r\) and \(b=q_{2} m+r\) where each of \(q_{1}\) and \(q_{2}\) is an integer and \(r\) is a nonnegative integer less than \(m\). Thus \(a-b=\left(q_{1}-q_{2}\right) m\). So \(a \equiv b(\bmod m)\).

\section*{Congruences of Sums and Products}

Theorem 4: Let \(m\) be a positive integer. If \(a \equiv b(\bmod m)\) and \(c \equiv\) \(d(\bmod m)\), then \(a+c \equiv b+d(\bmod m)\) and \(a c \equiv b d(\bmod m)\)

\section*{Proof:}
- Because \(a \equiv b(\bmod m)\) and \(c \equiv d(\bmod m)\), there is a pair of integers \(s\) and \(t\) with \(b=a+s m\) and \(d=c+t m\).
- Therefore,
- \(b+d=(a+s m)+(c+t m)=(a+c)+m(s+t)\) and
- \(b d=(a+s m)(c+t m)=a c+m(a t+c s+s t m)\).
- Hence, \(a+c \equiv b+d(\bmod m)\) and \(a c \equiv b d(\bmod m)\).

Example: Because \(7 \equiv 2(\bmod 5)\) and \(11 \equiv 1(\bmod 5)\), it follows that
\[
\begin{aligned}
& 18=7+11 \equiv 2+1=3(\bmod 5) \quad \text { and } \\
& 77=7 \cdot 11 \equiv 2 \cdot 1=2(\bmod 5)
\end{aligned}
\]

\section*{Algebraic Manipulation of Congruences}

Multiplying both sides of a valid congruence by an integer preserves congruence.
If \(a \equiv b(\bmod m)\) holds then \(c \cdot a \equiv c \cdot b(\bmod m)\), where \(c\) is any integer

Adding an integer to both sides of a valid congruence preserves validity.
If \(a \equiv b(\bmod m)\) holds then \(c+a \equiv(c+b)(\bmod m)\), where \(c\) is any integer

Dividing a congruence by an integer does not always produce a valid congruence.

Example: The congruence \(14 \equiv 8(\bmod 6)\) holds. But dividing both sides by 2 does not produce a valid congruence since \(14 / 2=7\) and \(8 / 2=4\), but \(7 \not \equiv 4(\bmod 6)\).

See Section 4.3 for conditions when division is ok.

\section*{Computing the mod \(m\) Function of Products and Sums}

We use the following corollary to Theorem 4 to compute the remainder of the product or sum of two integers when divided by \(m\) from the remainders when each is divided by \(m\).

Corollary: Let \(m\) be a positive integer and let \(a\) and \(b\) be integers. Then \((a+b)(\bmod m)=((a \bmod m)+(b \bmod m)) \bmod m\) and \(a b \bmod m=((a \bmod m)(b \bmod m)) \bmod m\).

\section*{Arithmetic Modulo \(m_{1}\)}

Definitions: Let \(\mathbf{Z}_{m}\) be the set of nonnegative integers less than \(m:\{0,1, \ldots ., m-1\}\)
- The operation \(+_{m}\) is defined as \(a+_{m} b=(a+b) \bmod m\). This is addition modulo \(m\).
- The operation \({ }_{m}\) is defined as \(a{ }_{m} b=(a \cdot b) \bmod m\). This is multiplication modulo \(m\).
- Using these operations is said to be doing arithmetic modulo \(m\).

Example: Find \(7{ }^{11} 9\) and \(7{ }_{11} 9\).
Solution: Using the definitions above:
- \(7+_{11} 9=(7+9) \bmod 11=16 \bmod 11=5\)
- \(7 \cdot_{11} 9=(7 \cdot 9) \bmod 11=63 \bmod 11=8\)

\section*{Arithmetic Modulo \(m_{2}\)}

The operations \(+_{m}\) and \({ }_{m}\) satisfy many of the same properties as ordinary addition and multiplication.
- Closure: If \(a\) and \(b\) belong to \(\mathbf{Z}_{m}\), then \(a+{ }_{m} b\) and \(a \cdot{ }_{m} b\) belong to \(\mathbf{Z}_{m}\).
- Associativity: If \(a, b\), and \(c\) belong to \(\mathbf{Z}_{m}\), then \(\left(a+_{m} b\right)+_{m} c=a\) \(+_{m}\left(b+_{m} c\right)\) and \(\left(a \cdot_{m} b\right) \cdot{ }_{m} c=a \cdot_{m}\left(b \cdot{ }_{m} c\right)\).
- Commutativity: If \(a\) and \(b\) belong to \(\mathbf{Z}_{m}\), then \(a+{ }_{m} b=b+_{m} a\) and \(a \cdot{ }_{m} b=b \cdot m\).
- Identity elements: The elements 0 and 1 are identity elements for addition and multiplication modulo \(m\), respectively.
- If \(a\) belongs to \(\mathbf{Z}_{m}\), then \(a+{ }_{m} 0=a\) and \(a \cdot{ }_{m} 1=a\).

\section*{Arithmetic Modulo \(m_{3}\)}
- Additive inverses: If \(a \neq 0\) belongs to \(\mathbf{Z}_{m}\), then \(m-a\) is the additive inverse of a modulo \(m\) and 0 is its own additive inverse.
- \(a+_{m}(m-a)=0\) and \(0+_{m} 0=0\)
- Distributivity: If \(a, b\), and \(c\) belong to \(\mathbf{Z}_{m}\), then
- \(a \cdot{ }_{m}\left(b+_{m} c\right)=\left(a \cdot_{m} b\right)+_{m}\left(a \cdot_{m} c\right)\) and \(\left(a+_{m} b\right){ }_{m} c=\left(a \cdot_{m} c\right)+_{m}\left(b \cdot{ }_{m} c\right)\).

Multiplicatative inverses have not been included since they do not always exist. For example, there is no multiplicative inverse of 2 modulo 6.```

