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Division

Definition: If a and b are integers with a ≠ 0, then a
divides b if there exists an integer c such that b = ac.

• When a divides b we say that a is a factor or divisor of b
and that b is a multiple of a.

• The notation a | b denotes that a divides b.

• If a | b, then b/a is an integer.

• If a does not divide b, we write a b.

Example: Determine whether 3 | 7 and whether
3 | 12.
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Properties of Divisibility
Theorem 1: Let a, b, and c be integers, where a ≠0. 

i. If a | b and a | c, then a | (b + c);

ii. If a | b, then a | bc for all integers c;

iii. If a | b and b | c, then a | c.

Proof: (i)  Suppose a | b and a | c, then it follows that there are 
integers s and t with b = as and c = at. Hence,

b + c = as + at = a(s + t). Hence,  a | (b + c)

(Exercises 3 and 4 ask for proofs of parts (ii) and  (iii).)
Corollary: If a, b, and c be integers, where a ≠0, such that a | b and 
a | c, then a | mb + nc whenever m and n are integers. 

Can you show how it follows easily from (ii) and (i) of Theorem 1?
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Division Algorithm
When an integer is divided by a positive integer, there is a quotient and a 
remainder. This is traditionally called the “Division Algorithm,” but is really a 
theorem.
Division Algorithm: If a is an integer and d a positive integer, then there are 
unique integers q and r, with 0 ≤ r < d, such that a = dq + r (proved in Section 5.2).
• d is called the divisor.

• a is called the dividend.

• q is called the quotient.      

• r is called the remainder.

Examples:  
• What are the quotient and remainder when 101 is divided by 11?

• Solution: The quotient when 101 is divided by 11 is 9 = 101 div 11,   and the 
remainder is 2 = 101 mod 11. 

• What are the quotient and remainder when −11 is divided by 3?

• Solution: The quotient when −11 is divided by 3 is −4 = −11 div 3, and the remainder 
is 1 = −11 mod 3.

Definitions of Functions  
div and mod

q = a div d
r = a mod d
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Congruence Relation
Definition: If a and b are integers and m is a positive integer, then a
is congruent to b modulo m if m divides a − b.

• The notation a  ≡ b (mod m) says  that a is congruent to b modulo m.  

• We say that a  ≡ b (mod m) is a congruence and that m is its modulus.

• Two integers are congruent mod m if and only if they have the same 
remainder when divided by m.

• If a is not congruent to b modulo m, we write a b (mod m)

Example: Determine whether 17 is congruent to 5 modulo 6 and 
whether 24 and 14 are congruent modulo 6.

Solution: 
• 17 ≡ 5 (mod 6) because 6 divides 17 − 5 = 12. 

• 24 14 (mod 6) since 24 − 14 = 10  is not divisible by 6.
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More on Congruences

Theorem 4: Let m be a positive integer. The 
integers a and b are congruent modulo m if and 
only if there is an integer k such that a = b + km.

Proof: 

• If a  ≡ b (mod m), then (by the definition of 
congruence)  m | a − b. Hence, there is an integer k
such that a − b = km and equivalently a = b + km.

• Conversely, if there is an integer k such that a = b + 
km, then km = a − b. Hence, m | a − b and a  ≡ b 
(mod m).
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The Relationship between
(mod m) and mod m Notations

The use of “mod” in a  ≡ b (mod m) and a mod m = 
b are different.

• a  ≡ b (mod m) is a relation on the set of integers.

• In a mod m = b,  the notation mod denotes a function.

The relationship between these notations is made 
clear in this theorem.

Theorem 3: Let a and b be integers, and let m be a 
positive integer. Then a ≡ b (mod m)  if and only if a 
mod m = b mod m. (Proof  in the exercises)



Theorem 3. Suppose that each of a and b is an integer and m is a
positive integer. Then a ≡ b(modm) if and only if a mod m = b mod m.

Proof. (⇒) If a ≡ b(modm) then a− b = km for some integer k. Also
a = q1m+ r1 and b = q2m+ r2 where each of q1 and q2 is an integer and
each of r1 and r2 is a nonnegative integer less than m. Thus
a− b = (q1 − q2)m+ r1 − r2 where −m < r1 − r2 < m. Since a− b is
also km we have km = (q1 − q2)m+ r1 − r2 so
(k − (q1 − q2))m = r1 − r2. This shows that r1 − r2 is an integral
multiple of m. Since −m < r1 − r2 < m it must be that r1 − r2 = 0 so
r1 = r2. Thus a mod m = b mod m.

(⇐) If a mod m = b mod m then a = q1m+ r and b = q2m+ r where
each of q1 and q2 is an integer and r is a nonnegative integer less than m.
Thus a− b = (q1 − q2)m. So a ≡ b(modm).

Dr. Philip Walker () 3336 3 / 3
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Congruences of Sums and Products
Theorem 5: Let m be a positive integer. If  a  ≡ b (mod m) and  c  ≡
d (mod m), then a + c  ≡ b + d (mod m) and ac  ≡ bd (mod m) 
Proof: 
• Because a  ≡ b (mod m)  and c  ≡ d (mod m), by Theorem 4 there are 

integers s and t with b = a + sm and d = c + tm.
• Therefore,  

• b + d = (a  + sm) + (c + tm) = (a + c) + m(s + t) and

• b d = (a  + sm) (c + tm) = ac + m(at + cs + stm).

• Hence, a + c  ≡ b + d (mod m) and ac  ≡ bd (mod m). 

Example: Because 7 ≡ 2 (mod 5) and  11 ≡ 1 (mod 5) , it follows 
from Theorem 5 that

18 = 7 + 11 ≡ 2 + 1 = 3 (mod 5)  
77 = 7 ∙ 11 ≡ 2 ∙ 1 = 2 (mod 5)
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Algebraic Manipulation of Congruences
Multiplying both sides of a valid congruence by an integer preserves 
validity. 

If  a  ≡ b (mod m) holds then c∙a ≡ c∙b (mod m), where c is any integer, 
holds by Theorem 5 with d = c.

Adding an integer to both sides of a valid congruence preserves validity.

If  a  ≡ b (mod m) holds then c + a  ≡ c + b (mod m), where c is any 
integer, holds by Theorem 5 with d = c.

Dividing a congruence by an integer does not always produce a valid 
congruence.

Example: The congruence 14≡ 8 (mod 6) holds. But dividing both sides by 
2 does not produce a valid congruence since 14/2 = 7 and 8/2 = 4, but     
7 4 (mod 6). 

See Section 4.3 for conditions when division is ok.
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Computing the mod m Function of 
Products and Sums

We use the  following corollary to Theorem 5  to  
compute the remainder of the product or sum of 
two integers when divided by m from the 
remainders when each is divided by m.

Corollary: Let m be a positive integer and let a
and b be integers. Then
(a + b) (mod m) = ((a mod m) + (b mod m)) mod m
and
ab mod m = ((a mod m) (b mod m)) mod m. 
(proof  in text)



© 2019 McGraw-Hill Education

Arithmetic Modulo m 1

Definitions: Let Zm be the set of nonnegative integers less 
than m: {0,1, …., m−1}
• The operation +m is defined as a +m b = (a + b) mod m. This is 

addition modulo m.

• The operation ∙m is defined as a ∙m b = (a ∙ b) mod m. This is 
multiplication modulo m.

• Using these operations is said to be doing arithmetic modulo m.

Example: Find 7 +11 9 and 7 ∙11 9.

Solution: Using the definitions above:
• 7 +11 9 = (7 + 9)  mod 11 = 16 mod 11 = 5

• 7 ∙11 9 = (7 ∙ 9)  mod 11 = 63 mod 11 = 8
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Arithmetic Modulo m 2

The operations +m and  ∙m  satisfy many of the same 
properties as ordinary addition and multiplication.
• Closure: If a and b belong to Zm , then a +m b and a ∙m b belong 

to Zm .

• Associativity: If a, b, and c belong to Zm , then (a +m b) +m c  = a
+m (b +m c) and (a ∙m b) ∙m  c  = a ∙m (b ∙m c).

• Commutativity: If a and b belong to Zm , then                                                                                          
a +m b  = b +m a and a ∙m b  = b ∙m a.

• Identity elements: The elements 0 and 1 are identity elements 
for addition and multiplication modulo m, respectively.

• If a belongs to  Zm , then a +m 0 = a and a ∙m 1 = a.



© 2019 McGraw-Hill Education

Arithmetic Modulo m 3

• Additive inverses: If a≠ 0 belongs to  Zm , then m− a is the additive 
inverse of a modulo m and 0 is its own additive inverse.  

• a +m (m− a ) = 0 and 0 +m 0 = 0

• Distributivity: If a, b, and c belong to Zm , then 

• a ∙m (b +m c) = (a ∙m b) +m (a ∙m c) and (a +m b) ∙m  c  = (a ∙m c) +m (b ∙m c).

Exercises 42-44 ask for proofs of these properties.

Multiplicatative inverses have not been included since they do not 
always exist. For example, there is no multiplicative inverse of 2 
modulo 6.

(optional) Using the terminology of  abstract algebra,  Zm with +m is 
a commutative group and  Zm with +m and ∙m is a commutative ring.  


