Solving Congruences

Section 4.4

Linear Congruences

Definition: A congruence of the form

 $ax \equiv b \pmod{m}$,

where *m* is a positive integer, *a* and *b* are integers, \overline{a} is called a *linear congruence*.

The solutions to a linear congruence $ax \equiv b$ (mod m) are the integers x that satisfy the congruence.

Definition: A congruence of the form
 $ax \equiv b(\text{ mod } m)$,

where *m* is a positive integer, *a* and *b* are integers

is called a *linear congruence*.

The solutions to a linear congruence $ax \equiv b(\text{ mod } m)$ are the

integers *x* inverse of a modulo m. ax ≡ b(mod *m*),
where *m* is a positive integer, *a* and *b* are integers
is called a *linear congruence*.
The solutions to a linear congruence $ax \equiv b$ (mod *m*) are the
integers *x* that satisfy the congruence.
Defini

where *m* is a positive integer, *a* and *b* are integers and the solutions to a linear congruence.
The solutions to a linear congruence $ax \equiv b(\text{ mod } m)$ are the integers *x* that satisfy the congruence.
Definition: An int inverse \bar{a} , if it exists. Although we can not divide both sides of the congruence by a , we can multiply by \bar{a} to solve for x.

Inverse of a modulo m

if ba = 1 (mod 6) has a solution.
The following theorem guarantees that an inverse of a modulo m

does exist whenever a and m are relatively prime. Two integers a and b are relatively prime when $gcd(a,b) = 1$.

Theorem 1: If a and m are relatively prime integers and $m > 1$, **INVETSE OF** *a* **modulo** *m*
The inverse of a modulo m does not always exist. Check b=1,2,3,4, and 5 to see
if ba = 1 (mod 6) has a solution.
The following theorem guarantees that an inverse of *a* modulo *m*
exist wheneve unique modulo m . (This means that there is a unique positive integer \bar{a} less than m that is an inverse of a modulo m and every other inverse of a modulo m is congruent to \bar{a} modulo m .) **Proof:** Since $gcd(a,m) = 1$, by Theorem 6 of Section 4.3, there are integers s and t such that $sa + tm = 1$. It turns out that this s is an • are relatively prime when $gcd(a,b) = 1$.
 heorem 1: If a and m are relatively prime integers are hen an inverse of a modulo m exists. Furthermore, the inique modulo m. (This means that there is a unique integer \bar{a} le **Frequent 1:** If a and m are relatively prime integers and $m > 1$,

then an inverse of a modulo m exists. Furthermore, this inverse is

inique modulo m. (This means that there is a unique positive

tteger \bar{a} less tha

- Consequently, s is an inverse of a modulo m .
- The uniqueness of the inverse is Exercise 7.

Finding Inverses,

Finding Inverses₁
The Euclidean algorithm and Bézout coefficients gives us a
systematic approaches to finding inverses of a modulo m when a and
Example: Find an inverse of 3 modulo 7. systematic approaches to finding inverses of a modulo m when a and Finding Inverses 1
The Euclidean algorithm and Bézout coefficients gives us a
systematic approaches to finding inverses of a modulo m when a ar
Example: Find an inverse of 3 modulo 7.
Solution: Because gcd(3,7) = 1, by Example: Find an inverse of 3 modulo 7.
 ution: Because $gcd(3,7) = 1$, by Theore

dulo 7 exists.

Using the Euclidian algorithm: $7 = 2.3 + 1$.

From this equation, we get $-2.3 + 1.7 = 1$, ar

Bézout coefficients of 3 and 7.

Solution: Because $gcd(3,7) = 1$, by Theorem 1, an inverse of 3 modulo 7 exists.

- Using the Euclidian algorithm: $7 = 2.3 + 1$.
- From this equation, we get $-2.3 + 1.7 = 1$, and see that -2 and 1 are
- Hence, −2 is an inverse of 3 modulo 7.
- Also every integer congruent to −2 modulo 7 is an inverse of 3 modulo 7, i.e., 5, −9, 12, etc.

Finding Inverses2 **Example:** Find an inverse of 101 modulo 4620.
 Example: Find an inverse of 101 modulo 4620.
 Solution: First use the Euclidian algorithm to show that $gcd(101,4620) = 4620 = 45 \cdot 101 + 75$

Working Backwards:

1601 is the coefficient on 101.

Solution: First use the Euclidian algorithm to show that $gcd(101,4620) = 1$.

Using Inverses to Solve Congruences

We can solve the congruence $ax \equiv b \pmod{m}$ by multiplying both sides by \bar{a} .

Using Inverses to Solve Congruences
We can solve the congruence $ax \equiv b$ (mod *m*) by multiplying both sides
by \bar{a} .
Example: What are the solutions of the congruence 3x≡ 4(mod 7).
Solution: We found that -2 is an inv Solution: We found that −2 is an inverse of 3 modulo 7 (two slides back). We multiply both sides of the congruence by −2 giving

2.5 to Solve Congruence sence $ax \equiv b \pmod{m}$ by multiplying both sides
solutions of the congruence $3x \equiv 4 \pmod{7}$.
-2 is an inverse of 3 modulo 7 (two slides back
f the congruence by -2 giving
-2 ⋅ 3x \equiv -2 ⋅ 4(mod 7). We can solve the congruence $ax \equiv b$ (mod *m*) by multiplying both sides
by \bar{a} .
Example: What are the solutions of the congruence $3x \equiv 4$ (mod 7).
Solution: We found that −2 is an inverse of 3 modulo 7 (two slides We can solve the congruence $ax \equiv b$ (mod *m*) by multiplying l
by \bar{a} .
Example: What are the solutions of the congruence $3x \equiv 4$ (m
Solution: We found that -2 is an inverse of 3 modulo 7 (two :
We multiply both si by *a*.
 Example: What are the solutions of the congruence $3x \equiv 4$ (mod 7).
 Solution: We found that -2 is an inverse of 3 modulo 7 (two slides back).

We multiply both sides of the congruence by -2 giving
 $-2 \cdot 3x$ Example: What are the solutions of the congruence $3x \equiv 4$ (mod 7).

Solution: We found that -2 is an inverse of 3 modulo 7 (two slides back).

We multiply both sides of the congruence by -2 giving
 $-2 \cdot 3x \equiv -2 \cdot 4$ (mo **Solution:** We found that -2 is an inverse of 3 modulo 7 (two slides back).
We multiply both sides of the congruence by -2 giving
 $-2 \cdot 3x = -2 \cdot 4 \pmod{7}$.
Because -6 = 1 (mod 7) and -8 = 6 (mod 7), it follows that if x is We multiply both sides of the congruence by -2 giving
 $-2 \cdot 3x \equiv -2 \cdot 4 \pmod{7}$.

Because $-6 \equiv 1 \pmod{7}$ and $-8 \equiv 6 \pmod{7}$, it follows that if x is a

solution, then $x \equiv -8 \equiv 6 \pmod{7}$ 6 was chosen because that is the numb –2 \cdot 3x \equiv –2 \cdot 4(mod 7).

Because –6 \equiv 1 (mod 7) and –8 \equiv 6 (mod 7), it follov

solution, then $x \equiv -8 \equiv 6 \pmod{7}$ 6 was chosen bec

in {0,1,2,3,4,5,6} that is congruent to –8 modulo 7.

We need to determine