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Discrete Exterior Calculus (DEC) aim to discretize Exterior Differential Calculus.
Definitions in (DEC) tries to mimic the existing smooth theory [4]. In his doctoral thesis
[6], in the year 2023, Hirani proposed fundaments of Discrete Exterior Calculus using
Discrete Combinatorics and Algebraic Topology definitions. In this way, discrete tools
were proposed in order to have an equivalent to differential forms and operators, vector
fields, geometric operators, etcetera.

One of main DEC applications is the creation of discrete operators to solve Partial
Differential Equations (PDE’s) numerically. The proof of it is given in [5] in the year of
2008 where authors discretize Darcy flow equations in order to solve them numerically.

In this project made for a Partial Differential Equations course an introduction
to basic concepts to DEC is presented trying not to avoid theoretical definitions such
as the ones from Algebraic Topology. On the other hand, such theoretical aspects are
widely explained through drawings, figures and examples.

Section 1 explain definitions related to simplicial complexes borrowed from Algebraic
Topology. Section 2 introduce to Discrete Exterior Calculus explaining steps to discretize
PDE’s. Finally Section 3 presents three DEC applications. Specifically Poisson equations
with Dirichlet conditions in R and R2 and a Heat equation example.
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1 Simplicial Complexes
This section presents some definitions of Algebraic Topology that will be useful for our
purposes. Most definitions here, are taken from [8] and [9].

1.1 Euclidean Simplicial Complexes
We begin by defining what a 𝑘-complex is. First, let us remember some Linear Algebra
definitions. An affine subspace of a vector space 𝑉 is the set 𝑓 −1(0) where 𝑓 : 𝑉 → 𝑊

is a function of the form 𝑓 (𝑥) = 𝑇(𝑥) + 𝑏 where, 𝑊 is a vector space and 𝑇 is a linear
transformation 𝑇 : 𝑉 → 𝑊 . The dimension of an affine subspace is defined as the
dimension of the kernel: ker(𝑇). Finally, (𝑘 − 1)-dimensional affine space of a vector
space 𝑉 , whose dimension is 𝑘, is called an affine hyperplane.

We say that {𝑣0, . . . , 𝑣𝑘} ⊂ R𝑛 are in general position or are affinely independent if
they are not contained in any (𝑘 − 1)-dimensional affine subspace, or equivalently if
{𝑣1 − 𝑣0, . . . , 𝑣𝑘 − 𝑣0} are linearly independent.

Definition 1. A 𝑘-simplex denoted by 𝜎 is the convex hull of 𝑘 + 1 points
𝑣0, . . . , 𝑣𝑘 ∈ R𝑛 in general position, i.e

𝜎 =

{
𝑘∑
𝑖=0

𝑡𝑖𝑣𝑖 ∈ R𝑛 :
𝑘∑
𝑖=0

𝑡𝑖 = 1, 𝑡𝑖 ≥ 0

}
.

The set 𝜎 ⊂ R𝑛 is given the subspace topology. We also say that 𝑣0, . . . , 𝑣𝑘 are
the vertices of the 𝑘-simplex and the integer 𝑘 is the dimension of 𝜎. Notation
⟨𝑣0, . . . , 𝑣𝑘⟩ denote the simplex spanned by 𝑣0, . . . , 𝑣𝑘 .

Let’s remember in addition that the convex hull of any subset 𝐴 ⊂ R𝑛 is the
intersection of all convex sets containing 𝐴. One can express the convex hull, as above,
in barycentric coordinates, i.e. as a nonnegative weighted combination of the vertices,
where the weights sum up to one. Next image shows a 0, 1, 2 and 3-simplex.

According to our Definition 1, we can notice that we cannot have a 𝑚-simplex in
R𝑛 if 𝑚 > 𝑛.

If 𝜎 is a 𝑘-simplex, then:

• we call a simplex spanned by a subset of the vertices of 𝜎 a face,

• the faces that are different to 𝜎 itself are called proper faces,
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• 0-dimensional and 1-dimensional faces of 𝜎 are vertices and edges respectively,

• the union of all proper faces is called the boundary of 𝜎 and denoted by Bd𝜎,

• the interior of 𝜎 is given by Int 𝜎 = 𝜎 \ Bd 𝜎.
It can be shown that every 𝑘-simplex is a 𝑘-dimensional manifold with boundary.

A 𝑛-dimensional manifold with boundary is a second countable Hausdorff space where
each point has a neighborhood homeomorphic to an open subset of the 𝑛-dimensional
upper half space H := {(𝑥1, . . . , 𝑥𝑛) ∈ R𝑛 : 𝑥𝑛 ≥ 0}. Let’s recall that a topological space
𝑋 is said to be Hausdorff if for every pair of distinct points 𝑝1 and 𝑝2 there exist to
disjoint neighborhoods of 𝑝1 and 𝑝2. In the other hand, a topological space 𝑋 is said to
be countable if it has a countable basis.

We desire an estructure that is a bunch of simplices connected or linked nicely in
some way:

Definition 2. An Euclidean simplicial complex ia a collection 𝒦 of simplices in
R𝑛 such that:

i) If 𝜎 ∈ 𝒦 , then each face of 𝜎 is in 𝒦 .

ii) The intersection of any two simplices in 𝒦 is either empty or a face of each.

The dimension of 𝒦 is the maximum dimension of any simplex in 𝒦 .

1.2 Abstract Simplicial Complexes
The notion of Euclidean simplicial complexes can be generalized in order to work
with different objects other than subsets of Euclidean spaces. We give a more abstract
definition of Simplicial Complexes where we only care about how things are connected
to each other and not how they are located geometrically:

Definition 3. An Abstract Simplicial Complex is a collection 𝒦 of nonempty
finite sets called abstract simplices with the following condition: If 𝜏 ∈ 𝒦 , then
every nonempty subset of 𝜏 is in 𝒦 . In addition:

• The dimension of an abstract simplex consisting of 𝑘 + 1 vertices is defined
to be 𝑘.

• The dimension of 𝒦 is the maximum dimension of any simplex in 𝒦 , if it
exists. Otherwise 𝒦 is said to be infinite-dimensional.

• We say that 𝒦 is a finite complex if 𝒦 is a finite set.

• Any element of a simplex 𝜏 ∈ 𝒦 is called a vertex of 𝜏, and a nonempty
subset of 𝜏 is called a face of 𝜎.

• A subset of 𝒦 that is itself a simplicial complex is called a subcomplex of
𝒦 .
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1.3 Oriented Simplicial Complex
We desire to have the notion of orientation in a 𝑘-simplex. We can think a 𝑘-simplex as
an array of 𝑘 + 1 vertices. This array can be sorted in many ways. Having this in mind
the following definition is presented in [9].

Definition 4. Let 𝜎 be a simplex (either geometric or abstract). Define two
orderings of its vertex set to be equivalent if they differ from one another by an
even permutation. If dim 𝜎 > 0, the orderings of the vertices of 𝜎 then fall into
two equivalence classes. Each of these classes is called an orientation of 𝜎. If 𝜎 is
a 0-simplex, then there is only one class and hence only one orientation of 𝜎. An
oriented simplex is a simplex 𝜎 together with an orientation of 𝜎.

We will use the symbol
𝑣0, . . . , 𝑣𝑘

to denote the simplex they span. The symbol

[𝑣0, . . . , 𝑣𝑘]

will denote the oriented simplex consisting of the simplex 𝑣0, . . . , 𝑣𝑘 and the equivalence
class of the particular ordering (𝑣0, . . . , 𝑣𝑘). An oriented simplicial complex is a
simplicial complex whose simplices are oriented simplices.

We can compare to simplices by its orientation as it is explained in [2]. If we
have a 𝑘-simplex complex 𝜎 = [𝑣0, . . . , 𝑣𝑘], then the induced orientation on each
of the (𝑘 − 1)-simplices is given by the equivalence class represented by the simplex
[𝑣0, . . . , 𝑣𝑖 , . . . , 𝑣𝑛] where 𝑣𝑖 means 𝑣𝑖 is omitted. For example if we have a 2−simplex
[𝑣0, 𝑣1, 𝑣2] the induced orientation of each of its 1-dimensional faces correspond to
[𝑣1, 𝑣2], [𝑣0, 𝑣2] and [𝑣0, 𝑣1].

Now, given two adjacent 𝑘−simplices (ie they share a maximal face) we can
compare their orientations as follows:

Definition 5. Two adjacent oriented simplices have the same relative orientation
if the (maximal) faces in their intersection have opposite orientation considering
both orientations induced by each simplex.

Figure 1.1 presents an easy example in order to understand the notion of relative
orientation.

The notion of relative orientation allows to define what is a primal mesh:

Definition 6. A primal mesh with dimension 𝑛 is a simplicial complex
with dimension 𝑛 such that every adjacent 𝑛-simplices have the same relative
orientation.
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Figure 1.1: No, I didn’t swap them.

1.4 Dual Complex of a Simplicial Complex
First, let’s remember from elementary school what a circumcenter is. We take the
following definition from Hirani’s thesis [6] :

Definition 7. The circumcenter of a 𝑘-simplex 𝜎 ⊂ R𝑘 denoted by 𝑐(𝜎) is given by
the center of the unique 𝑘-sphere that has all 𝑘 + 1 vertices of 𝜎 on its surface. If
the circumcenter of a simplex lies in its interior we call it a well-centered simplex.
A simplicial complex all of whose simplices (of all dimensions) are well-centered
will be called a well-centered simplicial complex.

Image below shows on the left a well-centered 3-simplex and on the right a 3-
simplex which is not well-centered.

As mention in [6], the circumcenter of a 𝑘−simplex can be obtained by taking the
intersection of the normals to the boundary faces, where the normals are emanating
form the circumcenter of the face. In this way one can compute the circumcenter of a
𝑘-simplex in a recursive way.

Lets suppose now that we have a simplicial complex 𝒦 of dimension 𝑛. Somehow
we would like to construct a simplicial complex, again of dimension 𝑛, starting from the
circumcenters of simplices in 𝒦 . In order to implement this procedure we will need 𝒦
to be a well centered simplicial complex, otherwise the circumcenter subdivision may
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not produce a simplicial complex. Following definition is taken from [6]:

Definition 8. The circumcenter subdivision of a well-centered simplicial complex
𝒦 of dimension 𝑛 is denoted by csd(𝒦 ), and it is a simplicial complex
with the same underlying space as 𝒦 and consisting of all simplices of the
form [𝑐(𝜎1), . . . , 𝑐(𝜎𝑘)] for 𝑘 = 1, . . . , 𝑛 (each index of sigma doesn’t represent
dimensionality). Here 𝜎1 ≺ 𝜎2 ≺ · · · ≺ 𝜎𝑘 , which means 𝜎𝑖 is a proper face of 𝜎𝑗
whenever 𝑖 < 𝑗 and each 𝜎𝑖 is in 𝒦 .

The preceding definition may be confusing, so we present a couple of examples.
Figure 1.2 shows an example with a simplicial complex with dimension 𝑛 = 1, ie a
graph. Figure 1.3 is an example for 𝑛 = 2 consisting only of a single 2-simplex ie a
triangle.

Figure 1.2: On the left it is shown colored in blue the simplicial complex 𝒦 = (𝑉, 𝐸).
The 0-simplices of csd(𝒦 ) (on red) consists of the circumcenters 𝑐(𝑣) for each 𝑣 ∈ 𝑉

and 𝑐(𝑒) for every 𝑒 ∈ 𝐸, note that 𝑐(𝑒) is the midpoint of the edge. In the other hand,
1-simplices of csd(𝒦 ) are the two halves of each edge.

This section is concluded with the following definition taken from [6]:

Definition 9. Let 𝒦 be a well-centered primal mesh of dimension 𝑛 and let 𝜎𝑝 be
a simplex in 𝒦 . The circumcenter dual cell of 𝜎𝑝 , denoted 𝐷(𝜎𝑝), is given by

𝐷(𝜎𝑝) =
𝑛−𝑝⋃
𝑟=0

⋃
𝜎𝑝≺𝜎1≺···≺𝜎𝑟

Int ([𝑐(𝜎𝑝)𝑐(𝜎1) . . . 𝑐(𝜎𝑟)]).

As in Definition 8, 𝜎1 ≺ 𝜎2 ≺ · · · ≺ 𝜎𝑘 , means 𝜎𝑖 is a proper face of 𝜎𝑗 whenever
𝑖 < 𝑗, and each 𝜎𝑖 is in 𝒦 . For 𝑟 = 0 interpret 𝜎𝑝 ≺ 𝜎1 ≺ . . . ≺ 𝜎𝑟 simply as 𝜎𝑝 .
Finally, the collection of dual cells is called the dual cell decomposition of 𝒦 .
This is a cell complex and will be denoted 𝐷(𝒦 ).
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Figure 1.3: On the left it is shown colored in blue the simplicial complex 𝒦 . The
0-simplices of csd(𝒦 ) (on red) are the circumcenters; each vertex of the triangle, the
midpoints of the edges and the circumcenter of the triangle. The 1-simplices are the two
halves of each edge and edges joining the circumcenter of the triangle to the vertices
and midpoints of the edges.

Definition 9 may be even more confusing that the eighth one. Therefore, an
example is shown above. On the right, the circumcenter dual cells corresponding to
each simplex on the left.

For practical purposes Figure 1.4 presents how the dual mesh is constructed from
the primal mesh. This practical recipe is given in [3]. This will be particularly useful
to construct the discrete Hodge star, which at the same time is needed to discretize the
Laplacian operator (Sections 2.3 and 2.4).
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Figure 1.4: Dual mesh construction

2 Discrete Exterior Calculus
2.1 Discrete Differential Forms
We aim to discretize differential forms. The concept of cochain will be introduced
here as an analogue of differential forms. At the same time, the role of 𝑘-manifolds
will be played by 𝑘-chains. First, lets understand what a 𝑘-chain is with the following
definition taken from [9]

Definition 10. Let 𝒦 be an oriented simplicial complex. A 𝑝-chain on 𝒦 is a
function 𝑐 from the set of oriented 𝑝-simplices of 𝐾, denoted by 𝒦𝑝 , to the reals,
such that:

• 𝑐(𝜎) = −𝑐(𝜎′) if 𝜎 and 𝜎′ are the opposite orientations of the same simplex.

• 𝑐(𝜎) = 0 for all but finitely many oriented 𝑝-simplices 𝜎.

We add 𝑝-chains by adding their values; the resulting group is denoted 𝒞𝑝(𝒦 )
and its called the group of (oriented) 𝑝-chains of 𝐾. If 𝑝 < 0 or 𝑝 > dim𝒦), we
let 𝒞𝑝(𝒦 ) denote the trivial group.

Important remark: Usually 𝑝-chains are considered to be functions 𝑐 : 𝒦𝑝 → Z.
As mentioned in [6] it is possible to define 𝑝-chains as functions 𝑐 : 𝒦𝑝 → R. This
has the advantage that 𝒞𝑝(𝒦 ) is not only a group, but also a vector space over R with
dimension

��𝒦𝑝

��. This, according to Hirani, has some advantages. Actually in [4],
𝑝-chains are defined in this way. We will consider 𝑝-chains as definition above.

As previous definitions, the above one seems too abstract as well. Nevertheless,
as remarked in we can think about a 𝑝-chain simply as an array or table of the oriented
𝑝−simplices of the given complex 𝒦 . An integer is entered corresponding to each
simplex. We can add up to tables by adding up the corresponding entries. Such set of
tables turns out to be an abelian group.

The following figure shows an example of a 0-chain, 1-chain and 2-chain over the
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same simplicial complex of dimension 𝑛 = 2. Here 𝑐 only takes integers values, but as
mentioned in the last remark, it could take any real values.

Now we will define a particular chain that will result to be very useful

Definition 11. If 𝜎 is an oriented simplex, the elementary chain 𝑐 corresponding
to 𝜎 is the function defined as follows:

𝑐(𝜎) = 1,
𝑐(𝜎′) = −1, if 𝜎′ is the opposite orientation of 𝜎,
𝑐(𝜏) = 0 for all other oriented simplices.

Above definition was taken from [9]. For an oriented simplex 𝜎, the elementary
chain 𝑐 corresponding to 𝜎 will be denoted by 𝑐𝜎. It is worth to mention that often the
symbol 𝜎 is used not only to denote a simplex but also to denote the corresponding
chain. Therefore, with this convention you can write 𝜎 = −𝜎′. However we will try to
avoid such convention and we’ll use 𝑐𝜎 instead.

We can observe that, given a simplicial complex 𝒦 , the set of elementary chains
corresponding to each simplex in 𝒦𝑝 (considering only one orientation of each simplex)
is a basis for 𝒞𝑝(𝒦 ). Such basis will be denoted by 𝛼𝑝 .

Now we can define our analogue to differential forms whose role will be played,
as it was already mention, by 𝑝−cochains. We’ll consider definition presented in [4]:

Definition 12. Given a simplicial complex 𝒦 . A 𝑝−cochain is a linear mapping
𝜔 : 𝒞𝑝(𝒦 ) → R.

Let’s remember that 𝒞𝑝(𝒦 ) is a vector space whose dimension is
��𝒦𝑝

��. Then
the space of 𝑝-cochains is also a vector space with dimension

��𝒦𝑝

��. Therefore, if we
represent each cochains and chains as column vectors, we use following notations

𝜔(𝑐) = 𝜔𝑇𝑐 = ⟨𝜔, 𝑐⟩ for each 𝑐 ∈ 𝒞𝑝(𝒦 ).

We connect this subsection with the next one through following definition taken
again from [4]. This definition highlight the analogy of chains and cochains with
manifolds and forms respectively:
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Definition 13. The integral of a 𝑝−cochain 𝜔 over a 𝑝−chain 𝑐 is defined to be∫
𝑐

𝜔 = 𝜔(𝑐).

Putting together notations we have for a 𝑝-chain 𝑐 and a 𝑝-cochain 𝜔 that:∫
𝑐

𝜔 = 𝜔(𝑐) = 𝜔𝑇𝑐 = ⟨𝜔, 𝑐⟩ .

2.2 Discrete Exterior Derivative
Here we aim to define an analogue version of the exterior derivative. First we need to
define the boundary operator 𝜕. Definition below is taken from [9]

Definition 14. Let 𝒦 be a simplicial complex. The boundary operator is a
homomorphism:

𝜕𝑝 : 𝒞𝑝(𝒦 ) → 𝒞𝑝−1(𝒦 ).
If 𝜎 = [𝑣0, . . . , 𝑣𝑝] is an oriented simplex with 𝑝 > 0, we define

𝜕𝑝(𝑐𝜎) = 𝜕𝑝(𝑐[𝑣0 ,...,𝑣𝑝]) =
𝑝∑
𝑖=0

(−1)𝑖𝑐[𝑣0 ,...,𝑣𝑖 ,...,𝑣𝑝],

where the symbol 𝑣𝑖 means that the vertex 𝑣𝑖 is to be deleted from the array. Since
𝒞𝑝(𝒦 ) is the trivial group for 𝑝 < 0, the operator 𝜕𝑝 is the trivial homomorphism
for 𝑝 ≤ 0.

We observe that the boundary operator 𝜕𝑝 is actually a linear transformation.
Therefore 𝜕𝑝 can be represented as a matrix of size

��𝒦𝑝−1
�� × ��𝒦𝑝

��. As in previous
definitions an example is presented. A very similar example with a hexagon is
explained in [3]. Lets consider the following simplicial complex 𝒦 :
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In this way, for the simplicial complex 𝒦 above we consider the following ordered
basis for 𝒞0(𝒦 ), 𝒞1(𝒦 ) and 𝒞2(𝒦 )

• 0-simplices:

𝛼0 =
{
𝑐[𝑣0], 𝑐[𝑣1], 𝑐[𝑣2], 𝑐[𝑣3], 𝑐[𝑣4]

}
⊂ 𝒞0(𝒦 ).

• 1-simplices:

𝛼1 =
{
𝑐[𝑣0 ,𝑣1], 𝑐[𝑣1 ,𝑣2], 𝑐[𝑣2 ,𝑣3], 𝑐[𝑣3 ,𝑣4], 𝑐[𝑣4 ,𝑣0], 𝑐[𝑣4 ,𝑣1], 𝑐[𝑣3 ,𝑣1]

}
⊂ 𝒞1(𝒦 ).

• 2-simplices:

𝛼2 =
{
𝑐[𝑣0 ,𝑣1 ,𝑣4], 𝑐[𝑣4 ,𝑣3 ,𝑣1], 𝑐[𝑣1 ,𝑣3 ,𝑣2]

}
⊂ 𝒞2(𝒦 ).

We compute 𝜕1 for each edge:

𝜕1(𝑐[𝑣0 ,𝑣1]) = 𝑐[𝑣1] − 𝑐[𝑣0],

𝜕1(𝑐[𝑣1 ,𝑣2]) = 𝑐[𝑣2] − 𝑐[𝑣1],

𝜕1(𝑐[𝑣2 ,𝑣3]) = 𝑐[𝑣3] − 𝑐[𝑣2],

𝜕1(𝑐[𝑣3 ,𝑣4]) = 𝑐[𝑣4] − 𝑐[𝑣3],

𝜕1(𝑐[𝑣4 ,𝑣0]) = 𝑐[𝑣0] − 𝑐[𝑣4],

𝜕1(𝑐[𝑣4 ,𝑣1]) = 𝑐[𝑣1] − 𝑐[𝑣4],

𝜕1(𝑐[𝑣3 ,𝑣1]) = 𝑐[𝑣1] − 𝑐[𝑣3].

Then the matrix representation of 𝜕1 in the ordered basis 𝛼1 and 𝛼0 is

[𝜕]1 =

©«
−1 0 0 0 1 0 0
1 −1 0 0 0 1 1
0 1 −1 0 0 0 0
0 0 1 −1 0 0 −1
0 0 0 1 −1 −1 0

ª®®®®®¬
We observe that 𝜕1 is actually the operator 𝐷𝑇 = −div on a graph as seen in the first
part of the EDP course [1] in the Discrete Calculus section.

Now we compute 𝜕2 for each triangle:

𝜕2(𝑐[𝑣0 ,𝑣1 ,𝑣4]) = 𝑐[𝑣1 ,𝑣4] − 𝑐[𝑣0 ,𝑣4] + 𝑐[𝑣0 ,𝑣1] = 𝑐[𝑣0 ,𝑣1] + 𝑐[𝑣4 ,𝑣0] − 𝑐[𝑣4 ,𝑣1],

𝜕2(𝑐[𝑣4 ,𝑣3 ,𝑣1]) = 𝑐[𝑣3 ,𝑣1] − 𝑐[𝑣4 ,𝑣1] + 𝑐[𝑣4 ,𝑣3] = −𝑐[𝑣3 ,𝑣4] − 𝑐[𝑣4 ,𝑣1] + 𝑣[𝑣3 ,𝑣1],

𝜕2(𝑐[𝑣1 ,𝑣3 ,𝑣2]) = 𝑐[𝑣3 ,𝑣2] − 𝑐[𝑣1 ,𝑣2] + 𝑐[𝑣1 ,𝑣3] = −𝑐[𝑣1 ,𝑣2] − 𝑐[𝑣2 ,𝑣3] − 𝑐[𝑣3 ,𝑣1].

Then the matrix representation of 𝜕2 in the ordered basis 𝛼2 and 𝛼1 is

[𝜕]2 =

©«

1 0 0
0 0 −1
0 0 −1
0 −1 0
1 0 0
−1 −1 0
0 1 −1

ª®®®®®®®®¬
Page 12



Solving Differential Equations with Discrete Exterior Calculus

We can notice that

[𝜕1 ◦ 𝜕2] = [𝜕]1[𝜕]2 =

©«
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

ª®®®®®¬
.

This is not coincidence. It is always satisfied that 𝜕𝑝−1 ◦ 𝜕𝑝 = 0 as proved in [9].
We are now ready to discretize the exterior derivative operator:

Definition 15. The 𝑝th discrete exterior derivative of 𝜔 is the transpose of the
(𝑝 + 1)st boundary operator:

𝑑𝑝 = 𝜕𝑇𝑝+1.

Therefore 𝑑𝑝 can be represented by a |𝒦𝑝+1| × |𝒦𝑝|.

The justification of previous definition is that, considering Definition 13, we can
count on the Stokes Theorem in a discrete setting:∫

𝑐

𝑑𝑝𝜔 =
〈
𝑑𝑝𝜔, 𝑐

〉
=

〈
𝜕𝑇𝑝+1𝜔, 𝑐

〉
=
〈
𝜔, 𝜕𝑝+1𝑐

〉
=
〈
𝜕𝑝+1𝑐, 𝜔

〉
=

∫
𝜕𝑝+1𝑐

𝜔.

where 𝑐 is a 𝑝-chain and 𝜔 is a 𝑝-cochain.

2.3 The Hodge Star

In this subsection we aim to discretize Hodge star operator in R2. First we need to
understand how Hodge star operator exactly works, and overall, what exactly is the
Hodge star operator. We’ll focus in R2 and everything well be tried to be explained in
a simplified and not too theoretical way as it is done in [3] and [7].

2.3.1 Hodge Star in Exterior Algebra

In exterior algebra, the Hodge star operator, denoted by★, is an analogue of orthogonal
complement in linear algebra. In general, if 𝑣 is a 𝑘-vector∈ R𝑛 , then★𝑣 is a (𝑛−𝑘)-vector
that somehow is a complement in some way [7].

Let’s consider the canonical vector 𝑒1 ∈ R2. We aim to find another vector 𝑣 ∈ R2

such that they form has area 1. There are multiple choices for 𝑣, however, if we desire
orthogonality and standard orientation the unique solution is the canonical vector
𝑣 = 𝑒2. This is what ★ operator does, it says that 𝑒1 and 𝑒2 are complement between
them. This is, ★𝑒1 = 𝑒2 and ★𝑒2 = −𝑒1.

The equation that defines the Hodge star operator for any 𝑣 ∈ R2 is

𝑤 ∧ (★𝑣) = ⟨𝑤, 𝑣⟩ 𝑒1 ∧ 𝑒2 for every 𝑤 ∈ R2.

Particularly 𝑣∧(★𝑣) = |𝑣|2 𝑒1∧ 𝑒2 is satisfied. This means 𝑣 and★𝑣 form a square whose
area is |𝑣|2. Therefore, for vectors in R2, the Hodge star is just a quarter-rotation in the
counter-clockwise direction as shown below.
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We’ve seen what ★ does to vectors in R2. Now, let’s see what ★ does to bivectors.
This, is let’s see what ★(𝑣 ∧ 𝑤) is for 𝑣, 𝑤 ∈ R2. We need to treat bivectors as vectors
not in R2 but in a different space:

∧2 R2. Thus, somehow replicating relation above for
vectors in R2, we have:

(𝑣 ∧ 𝑤) ∧★(𝑣 ∧ 𝑤) = vol(𝑣 ∧ 𝑤)2𝑒1 ∧ 𝑒2

where vol(𝑣 ∧ 𝑤) is the area of 𝑣 ∧ 𝑤. We know that 𝑣 ∧ 𝑤 = vol(𝑣 ∧ 𝑤)𝑒1 ∧ 𝑒2 is a
bivector. Therefore, ★(𝑣 ∧ 𝑤) has to be a vector, specifically

★(𝑣 ∧ 𝑤) = vol(𝑣 ∧ 𝑤).

We can notice that ★(𝑒1 ∧ 𝑒2) = vol(𝑒1 ∧ 𝑒2) = 1.
Although explanation above is enough for our purposes, the formal definition of

the Hodge star operator is presented:

Definition 16. Let 𝑉 be a 𝑛−dimensional vector space with a symmetric bilinear
form ⟨·, ·⟩ and the orthonormal oriented basis {𝑒1, . . . , 𝑒𝑛}. The Hodge star
operator is a linear operator mapping 𝑘-vectors to (𝑛 − 𝑘)−vectors (𝑘 = 1, . . . , 𝑛)
with the following property which defines it completely:

𝛼 ∧ (★𝛽) =
〈
𝛼, 𝛽

〉
𝑒1 ∧ 𝑒2 ∧ · · · ∧ 𝑒𝑛 .

2.3.2 Discrete Hodge Star

We saw above that if 𝑣 is a 𝑘−vector, then ★𝑣 is a (𝑛 − 𝑘)−vector. In the other hand, in
Section 1.4 we observed that the dual cell of a 𝑘-simplex has dimension 𝑛− 𝑘 (see image
below Definition 9). This gives a clue: dual meshes will play some important role that
will help discretize the Hodge star operator.

We’d said that in R2, Hodge star operator only rotates vectors 90 degrees in the
counter-clockwise direction. If we have an edge [𝑎, 𝑏] we get ★[𝑎, 𝑏] by rotating [𝑎, 𝑏]
90 degrees around its midpoint. We can see that the dual cell 𝐷[𝑎, 𝑏] is in the same
position than ★[𝑎, 𝑏] but it has different length.
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However we know that
ℓ (★[𝑎, 𝑏]) = ℓ ([𝑎, 𝑏])

where ℓ represents the length of an edge. Therefore we have the relationship:

𝐷[𝑎, 𝑏]
ℓ (𝐷[𝑎, 𝑏]) =

★[𝑎, 𝑏]
ℓ (★[𝑎, 𝑏]) =

★[𝑎, 𝑏]
ℓ ([𝑎, 𝑏]) .

Thus
𝐷[𝑎, 𝑏] = ℓ (𝐷[𝑎, 𝑏])

ℓ ([𝑎, 𝑏]) ★ [𝑎, 𝑏]

If we apply Hodge operator to every 1-simplex (edges) we get the diagonal
Discrete Hodge matrix:

M 1 =

©«

ℓ (𝐷(𝑒1))
ℓ (𝑒1) 0 0 · · · 0
0 ℓ (𝐷(𝑒2))

ℓ (𝑒2) 0 · · · 0
0 0 ℓ (𝐷(𝑒2))

ℓ (𝑒2) · · · 0
...

...
...

. . . 0
0 0 0 · · · ℓ (𝐷(𝑒𝑚))

ℓ (𝑒𝑚)

ª®®®®®®®®¬
where

• 𝑒𝑖 is each 1-simplex (edge) in our primal mesh 𝒦 given in some order,

• 𝐷(𝑒1) is the dual cell of 𝑒1, which is again an edge and

• 𝑚 = |𝒦1| is the number of edges in the primal mesh.

In general, let {𝜎𝑘
𝑖
} be the 𝑘-simplices of 𝐾. Then the discrete 𝑘th Hodge star is a

diagonal matrix such that

(M 𝑘)𝑖𝑖 =
vol(𝐷(𝜎𝑘

𝑖
))

vol(𝜎𝑘
𝑖
)

where vol(𝜎) indicates the length, area or volume of 𝜎, which by convention equals one
for a point (vertex).

In section 2.1 we saw that evaluating a discrete manifolds (a chain) in a discrete
form (a cochain) can be thought as integrating a form over a manifold (cells). This
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makes sense with our definition of discretize Hodge star: evaluating a discrete form
over a primal or dual form should be the same in some way, but we need to take into
consideration that primal and dual cells have different volume. Therefore Hodge star
normalize by some ratio of lengths, areas or volumes when mapping between primal
and dual [7].

We can notice that the inverse of the discrete Hodge star operator takes dual forms
to primal forms. Particularly

M −1
0 =

©«

1
vol(𝐷[𝑣1]) 0 0 · · · 0

0 1
vol(𝐷[𝑣2]) 0 · · · 0

0 0 1
vol(𝐷[𝑣3]) · · · 0

...
...

...
. . . 0

0 0 0 · · · 1
vol(𝐷[𝑣𝑚])

ª®®®®®®®¬
will be useful for us in order to discretize the Laplacian operator. Here, 𝑣𝑖 is each of the
𝑚 vertices in the primal mesh.

2.4 Laplacian Operator
Laplace operator is very important because it plays fundamental roles in geometric
and physical contexts. For instance, we know that it appears in diffusion and wave
equations. We may know the classical definition of the Laplacian, but as we aim to
discretize it, we need to write it in a different and convoluted way.

2.4.1 Continuos Laplace Operator

We know that Laplace Operator is defined as follows:

Δ 𝑓 =
𝜕2 𝑓

𝜕𝑥2
1
+ 𝜕2 𝑓

𝜕𝑥2
2
+ · · · + 𝜕2 𝑓

𝜕𝑥2
𝑛

.

for any 𝑓 : Ω ⊂ R𝑛 → R such that 𝑓 ∈ 𝐶2(Ω). Let’s recall that the divergence operator
is given by

div 𝐹 =
𝜕𝐹1
𝜕𝑥1

+ 𝜕𝐹2
𝜕𝑥1

+ · · · + 𝜕𝐹𝑛
𝜕𝑥𝑛

.

where 𝐹 = (𝐹1, . . . , 𝐹𝑛) is a differentiable vector field. We can write Laplace operator as

Δ 𝑓 = div (grad 𝑓 ).
Such expression is not enough to discretize Δ.

We’ll focus only in Ω ⊂ R2. Let 𝑓 : Ω → R a function in 𝐶2(Ω). If we apply the
exterior derivative to 𝑓 we get a 1-form:

𝑑𝑓 =
𝜕 𝑓

𝜕𝑥
𝑑𝑥 + 𝜕 𝑓

𝜕𝑦
𝑑𝑦.

We can encode a 1-form in a vector field using the sharp operator ♯, flat operator ♭ does
the reverse. Then we have the vector field:

grad 𝑓 =

(
𝜕 𝑓

𝜕𝑥
,
𝜕 𝑓

𝜕𝑦

)
= (𝑑𝑓 )♯ .
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Let’s keep that in mind and procede to discretize div operator. Let 𝐹 = (𝐹1, 𝐹2)
be a differentiable vector field. We know that applying the Hodge star operator to a
1-form in R2 is the same as rotating the 1-form by 90 degrees counter-clockwise. This
is,

★(𝐴 𝑑𝑥 + 𝐵 𝑑𝑦) = −𝐵 𝑑𝑥 + 𝐴 𝑑𝑦.
for any 1-form in R2. Therefore

★𝐹♭ = ★(𝐹1 𝑑𝑥 + 𝐹2 𝑑𝑦)
= −𝐹2 𝑑𝑥 + 𝐹1 𝑑𝑦.

Applying exterior derivative we get:

𝑑 ★ 𝐹♭ = 𝑑(−𝐹2 𝑑𝑥 + 𝐹1 𝑑𝑦)
= 𝑑(−𝐹2 𝑑𝑥) + 𝑑(𝐹1 𝑑𝑦)

= −
(
𝜕𝐹2
𝜕𝑥

𝑑𝑥 + 𝜕𝐹2
𝜕𝑦

𝑑𝑦

)
∧ 𝑑𝑥 +

(
𝜕𝐹1
𝜕𝑥

𝑑𝑥 + 𝜕𝐹1
𝜕𝑦

𝑑𝑦

)
∧ 𝑑𝑦

= −𝜕𝐹2
𝜕𝑦

𝑑𝑦 ∧ 𝑑𝑥 + 𝜕𝐹1
𝜕𝑥

𝑑𝑥 ∧ 𝑑𝑦

=

(
𝜕𝐹1
𝜕𝑥

+ 𝜕𝐹2
𝜕𝑦

)
𝑑𝑥 ∧ 𝑑𝑦.

By taking the Hodge star in both sides we get the divergence operator.

★𝑑 ★ 𝐹♭ =

(
𝜕𝐹1
𝜕𝑥

+ 𝜕𝐹2
𝜕𝑦

)
= div 𝐹.

Finally, substituting in above equation 𝐹 = grad 𝑓 and recalling that grad 𝑓 = (𝑑𝑓 )♯ we
obtain:

Δ 𝑓 = div (grad 𝑓 ) = div ((𝑑𝑓 )♯) = ★𝑑 ★ ((𝑑𝑓 )♯)♭ = ★𝑑 ★ 𝑑𝑓 .

We have gotten the desire expression for the Laplacian:

Δ = ★𝑑 ★ 𝑑.

A similar computing for R3 can be found in [7] (chapter 4).

{0 − forms} {1 − forms}

{(𝑛 − 1) − forms}

{0 − forms} {𝑛 − forms}

𝑑

Δ

★

𝑑

★

Figure 2.1: Exterior derivative operator takes 𝑘-forms to (𝑘 + 1)-forms. Hodge star
operator takes 𝑘-forms to (𝑛 − 𝑘)-forms. Recall that 0-forms are R𝑛 → R functions.

Laplacian also can be defined for 𝑘-forms in general. The discretization for Laplace
operator in such case is given by Δ = ★𝑑★ 𝑑 + 𝑑★ 𝑑★. Note that if 𝑘 = 0 the term 𝑑★ 𝑑★
equals cero (see [7] chapter 6).
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2.4.2 Discrete Laplace Operator

We aim to discretize Laplace Operator. We already have done almost all the work as we
have discretized Δ in terms of ★ and 𝑑 operators and in addition we have discretized ★
and 𝑑 operators.

Let’s suppose that we have a primal mesh 𝒦 with 𝑁 vertices and 𝑀 edges. We
desire to discretize Δ 𝑓 for 𝑓 ∈ 𝐶2(Ω) where Ω ⊂ R2. For each vertex 𝑣𝑖 we denote
𝑓𝑖 = 𝑓 (𝑣𝑖), 𝑖 = 1, . . . , 𝑁 . In section 2.1 we define discrete 𝑝-forms to be 𝑝-cochains. At
the same time 𝑝-cochains can be represented as vectors (arrays) with length

��𝒦𝑝

��. In
this case, the vector

𝑓 = ( 𝑓1, 𝑓2, . . . , 𝑓𝑁 )
is the discrete version of the 0-form 𝑓 : Ω → R.

In Section 2.2 we define the boundary operator 𝜕 and the discrete exterior derivate
to be 𝑑 = 𝜕𝑇 . We also saw that 𝜕1 can be represented as a 𝑁 × 𝑀 matrix. Therefore
𝑑0 = 𝜕𝑇1 is a 𝑀 × 𝑁 matrix. Then 𝑑0 𝑓 is a vector in R𝑀 (array of size 𝑀) which can be
seen as a discrete 1-form.

Now we have to apply the Hodge star operator M 1 defined in the last subsection.
This will take to 1-form 𝑑0 𝑓 to another 1-form but in the dual mesh. This make sense
because M 1𝑑0 𝑓 ∈ R𝑀 and the dual mesh has 𝑀 edges as well.

Then, we need to apply another discrete derivate. In this case we can think that
operators 𝜕 and 𝑑 will switch roles over the dual mesh. Discrete exterior derivative will
be in this case the −𝜕1 operator. So far we have −𝜕1M 1𝑑0 𝑓 ∈ R𝑁 which is a discrete
2-form in the dual mesh.

Let’s make a brief parenthesis to connect the ideas with the section of Discrete
Calculus in the course. We discretize Laplacian for graphs (simplicial complexes with
dimension 1) as Δ = div grad . Using notation presented here we have grad = 𝑑0 and
div = 𝜕1. However we didn’t care about how long the edges were. In this case we do,
so we resize calculations via Hodge star operators.

Finally we take another Hodge star operator. Notice that we are in the dual mesh
yet, so we need to return to the primal mesh via the inverse Hodge operator M −1

0 that
takes discrete 2-forms in the dual mesh to discrete 0-forms in the primal mesh. Notice
that −M −1

0 𝜕1M 1𝑑0 𝑓 ∈ R𝑁 . The i-th entry of −M −1
0 𝜕1M 1𝑑0 𝑓 takes the value Δ 𝑓 (𝑣𝑖).

Avoiding subindices we have the Discrete Laplace operator:

Δ = M 𝜕M 𝑑.

Notice that diagram shown in Figure 2.1 also applies to the discrete setting.

3 Solving Differential Equations
3.1 Poisson equation in R

Method explained in this subsection will be useful to solve Poisson equation with
boundary Dirichlet conditions

𝑓 ′′(𝑥) = 𝑔(𝑥), 𝑥 ∈ [𝑎, 𝑏],
𝑓 (𝑎) = 𝛼, 𝑓 (𝑏) = 𝛽.
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where 𝑓 is the unknown function.
We explain such method with the simple ODE

𝑓 ′′(𝑥) = sin(𝑥), 𝑥 ∈ [0, 2𝜋],
𝑓 (0) = 5, 𝑓 (2𝜋) = 6.

By integrating two times in both sides of the equation we get 𝑓 (𝑥) = − sin(𝑥) + 𝑐1𝑥 + 𝑐2
for constants 𝑐1, 𝑐2 ∈ R. Boundary condition 𝑓 (0) = 5 implies 𝑐2 = 5. Then, 𝑓 (2𝜋) = 6
implies 𝑐1 = 1/2𝜋. Therefore

𝑓 (𝑥) = − sin(𝑥) + 1
2𝜋𝑥 + 5.

is the ground truth for the solution. Let’s approximate such solution through Discrete
Exterior Calculus.

First we discretize interval [0, 2𝜋] through a partition. For convenience each
subinterval in the partition has same length ℓ .

We need to compute 𝜕1 operator for our simplicial complex:

𝜕1 =

©«
−1 0 0 0
1 −1 0 0
0 1 −1 0
0 0 1 −1
0 0 0 1

ª®®®®®¬
.

Recall that 𝑑0 = 𝜕𝑇1 . We will need Hodge star matrices as well. For that we need the
dual mesh

We need M 1 and M 0. In this case, M 1 takes primal 1-forms to dual 0-forms:

M 1 =

©«
vol(𝐷[𝑣1 ,𝑣2])
vol([𝑣1 ,𝑣2]) 0 0 0

0 vol(𝐷[𝑣2 ,𝑣3])
vol([𝑣2 ,𝑣3]) 0 0

0 0 vol(𝐷[𝑣2 ,𝑣3])
vol([𝑣2 ,𝑣3]) 0

0 0 0 vol(𝐷[𝑣3 ,𝑣4])
vol([𝑣3 ,𝑣4])

ª®®®®®¬
=

©«
1
ℓ 0 0 0
0 1

ℓ 0 0
0 0 1

ℓ 1
0 0 0 1

ℓ

ª®®®¬ .
On the other hand matrix M 0 takes primal 0-forms to dual 1-forms:

M 0 =

©«

vol(𝐷[𝑣1])
vol([𝑣1]) 0 0 0 0

0 vol(𝐷[𝑣2])
vol([𝑣2]) 0 0 0

0 0 vol(𝐷[𝑣3])
vol([𝑣3]) 0 0

0 0 0 vol(𝐷[𝑣4])
vol([𝑣4]) 0

0 0 0 0 vol(𝐷[𝑣5])
vol([𝑣5])

ª®®®®®®®®¬
=

©«
ℓ
2 0 0 0 0
0 ℓ 0 0 0
0 0 ℓ 0 0
0 0 0 ℓ 0
0 0 0 0 ℓ

2

ª®®®®®¬
.
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Now, we can construct Discrete Laplacian matrix:

Δ = −M −1
0 𝜕1M 1𝑑0 =

©«

−8
𝜋2

8
𝜋2 0 0 0

4
𝜋2

−8
𝜋2

4
𝜋2 0 0

0 4
𝜋2

−8
𝜋2

4
𝜋2 0

0 0 4
𝜋2

−8
𝜋2

4
𝜋2

0 0 0 8
𝜋2

−8
𝜋2

ª®®®®®¬
.

We have the linear system

Δ 𝑓 =

©«

−8
𝜋2

8
𝜋2 0 0 0

4
𝜋2

−8
𝜋2

4
𝜋2 0 0

0 4
𝜋2

−8
𝜋2

4
𝜋2 0

0 0 4
𝜋2

−8
𝜋2

4
𝜋2

0 0 0 8
𝜋2

−8
𝜋2

ª®®®®®¬
©«
𝑓1
𝑓2
𝑓3
𝑓4
𝑓5

ª®®®®®¬
=

©«
sin(𝑣1)
sin(𝑣2)
sin(𝑣3)
sin(𝑣4)
sin(𝑣5)

ª®®®®®¬
where 𝑓𝑖 := 𝑓 (𝑣𝑖). We notice that rank(Δ) = 4. However we know that 𝑓1 = 5 and
𝑓5 = 6. So we only need to solve the system for 𝑓2, 𝑓3 and 𝑓4. We define Δ(𝑎,𝑏) as the
matrix obtained by deleting rows and columns corresponding to vertices 𝑣1 and 𝑣2 (in
this case rows and columns 1 and 5):

Δ(0,2𝜋) =
©«
−8
𝜋2

4
𝜋2 0

4
𝜋2

−8
𝜋2

4
𝜋2

0 4
𝜋2

−8
𝜋2

ª®¬ .
Matrix Δ(0,2𝜋) has rank equal to 3 so we can solve the linear system

Δ(0,2𝜋)
©«
𝑓2
𝑓3
𝑓4

ª®¬ = ©«
sin(𝑣2)
sin(𝑣3)
sin(𝑣4)

ª®¬ − ©«
𝑓1Δ2,1 + 𝑓5Δ2,5
𝑓1Δ3,1 + 𝑓5Δ3,5
𝑓1Δ4,1 + 𝑓5Δ4,5

ª®¬
obtaining values 𝑓2, 𝑓3 and 𝑓4. In this way, we get the following approximation
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We get can compute the Mean Square Error:

𝑀𝑆𝐸 := 1
𝑁

𝑁∑
𝑖=1

( 𝑓𝑖 − 𝑦𝑖)2 = 0.021846378853579356.

where 𝑦𝑖 is the ground truth for vertex 𝑖.
If we do the same but this time we discretize [0, 2𝜋] with a partition with 200

vertices we obtain a very accurate approximation

Such approximation has a very small error:

𝑀𝑆𝐸 = 3.4338479197291504 × 10−9.

3.2 Poisson equation in R2

This example was done for a project in a Discrete Differential Geometry course. It was
implemented in Python. We consider Poisson equation with Dirichlet conditions

Δ 𝑓 = 𝑔, (𝑥, 𝑦) ∈ Ω

𝑓 (𝑥, 𝑦) = 𝜑(𝑥, 𝑦) (𝑥, 𝑦) ∈ 𝜕Ω.

Most of the theoretical work has been done in Section 2. Moreover, this example
is almost the same as the 1-dimensional case but this time we have more than 2 vertices
in 𝜕Ω. We first need to construct a mesh for domain Ω as the one shown in Figure 3.1
but a more refined one. Notice that there are many points of the discretization that are
in 𝜕Ω.

As explained before we only need to construct matrix

Δ = −M −1
0 𝜕1M 1𝑑0

that depends only on the mesh. In this case matrices M 1 and M −1
0 are those shown in

Section 2.3.2. Notice that Δ is a 𝑁 × 𝑁 matrix where 𝑁 is the number of vertices in the
mesh.
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Figure 3.1: Discretization ofΩ.

On the other hand, let

𝑏 = (𝑔(𝑣1), 𝑔(𝑣2), . . . , 𝑔(𝑣𝑁 )) ∈ R𝑁 .

Then, we have the linear system

Δ 𝑓 = 𝑏.

However, notice that 𝑓 ∈ R𝑁 is such that 𝑓𝑖 =

𝜑(𝑣𝑖) if the 𝑖th vertex is in 𝜕Ω. We therefore need to
solve an auxiliar system only for the vertices in Ω:

ΔΩ 𝑓Ω = 𝑏′

Here, as in the 1-dimensional case, ΔΩ is the square matrix obtained by deleting rows
and columns corresponding to vertices in 𝜕Ω. In general, for a vector 𝑢 ∈ R𝑁 we denote
by 𝑢Ω the vector obtained by deleting entries corresponding to vertices in 𝜕Ω. Then 𝑏′
is given by

𝑏′ = 𝑏Ω − (Δℎ)Ω
where

ℎ𝑖 =

{
𝑓𝑖 if 𝑣𝑖 ∈ 𝜕Ω,
0 otherwise.

In this way, solving the system ΔΩ 𝑓Ω = 𝑏′ we obtain 𝑓 (𝑣𝑖) for vertices in Ω and we
would have gotten an estimation of 𝑓 for each vertex in the primal mesh.

If we set

𝑔(𝑥, 𝑦) = −3𝜋
(
2𝜋 sin

(
3𝜋
2 (𝑥2 + 𝑦2)

)
+ 3𝜋(𝑥2 + 𝑦2) cos

(
3𝜋
2 (𝑥2 + 𝑦2)

))
and boundary condition 𝜑(𝑥, 𝑦) = 0. We get solution
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On the other hand, DEC approximation is shown below:
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3.3 Heat equation in one dimension
Here we aim to solve numerically Heat equation with Dirichlet boundary condition

𝜕𝑡𝑢 = 𝜕2
𝑥𝑢, 𝑥 ∈ (𝑎, 𝑏),

𝑢(𝑎, 𝑡) = 𝛼, 𝑢(𝑏, 𝑡) = 𝛽.

and initial condition
𝑢(𝑥, 0) = 𝜑(𝑥).

Supposing that the primal mesh of [𝑎, 𝑏] has 𝑁 vertices, let’s think u as a function
u : R → R𝑁 where 𝑖th entry u𝑖(𝑡) corresponds to 𝑢(𝑣𝑖 , 𝑡). We construct matrix Δ as
in Section 3.1. However we need to discretize temporal derivative 𝜕𝑡𝑢. We may try
to use a partition {𝑡1, 𝑡2, . . . , 𝑡𝑀} such that 𝑡 𝑗+1 − 𝑡 𝑗 = ℎ, initial condition and an ODE
numerical method as Euler’s one:

u(𝑡 𝑗+1) = u(𝑡 𝑗) + ℎΔu(𝑡 𝑗).

This scheme is called forward Euler [7] (Section 6.6). As mentioned in [7], forward Euler
is not numerically stable. In addition we could not plug Dirichlet boundary conditions
so easily.

Page 24



Solving Differential Equations with Discrete Exterior Calculus

Fortunately we could use another scheme. If we think backwards we can write:

u(𝑡 𝑗) = u(𝑡 𝑗+1) − ℎΔu(𝑡 𝑗+1) = (𝐼 − ℎΔ)u(𝑡 𝑗+1).

This scheme is called backward Euler and it is far more stable [7]. Nevertheless it is
computationally more expensive as we need to solve system for 𝑢(𝑡 𝑗):

u(𝑡 𝑗) = 𝐴u(𝑡 𝑗+1), 𝐴 := 𝐼 − ℎΔ.

We can solve this system as we did in Section 3.1 plugging boundary conditions.
An example taken from [10] which was solve as a homework of the EDP course

[1]

Problem 1. A rod has lenght 𝑙 = 1 and (diffusion) constant 𝑘 = 1. Its temperature
satisfies the heat equation. Its left end is held at temperature 0, its right end ar
temperature 1. Initially (at 𝑡 = 0) the temperature is given by

𝜑(𝑥) =
{

5𝑥/2 , 𝑥 ∈ [0, 2/3]
3 − 2𝑥 , 𝑥 ∈ [2/3, 1]

We have PDE:

𝜕𝑡𝑢 = 𝜕2
𝑥𝑢, 𝑥 ∈ (0, 1),

𝑢(0, 𝑡) = 0, 𝑢(1, 𝑡) = 1.

and initial condition
𝑢(𝑥, 0) = 𝜑(𝑥).

We saw that exact solution is given in terms of the serie:

𝑢(𝑥, 𝑡) = 𝑥 + 9
𝜋2

∞∑
𝑛=1

1
𝑛2 exp(−𝑛2𝜋2𝑡) sin

(
2𝜋𝑛

3

)
sin(𝑛𝜋𝑥).

Page 25



Solving Differential Equations with Discrete Exterior Calculus

Here, ground truth is taken as the sum of first 100 terms of the serie. Now, we
plot Discrete Exterior Calculus approximation

Page 26



Solving Differential Equations with Discrete Exterior Calculus

Page 27



Solving Differential Equations with Discrete Exterior Calculus

4 Conclusions and future work
Discrete Exterior Calculus is a very useful tool to solve numerically many types of
Partial Differential Equations. It is an alternative to classical Finite Element approach.

The main contributions of this project are:

• Explanations of basic theoretical DEC concepts in a simple way but without
forgetting important theoretical aspects.

• Connect theoretical definitions from Algebraic Topology and Hirani’s thesis [6]
with more practical and applicative concepts from [7] and [3].

• Definitions are visualized through images and figures with a more pedagogical
approach.

• Practical and simple examples of problems that can be solve though DEC.

• DEC applications in Section 3 were made from scratch, except for Example 3.2
that was part of a project in a Discrete Differential Geometry course.

Some work and ideas that can be worked as a future work are:

• Implementations of applications in Section 3 can be done in a faster programming
language as Julia or C++. Organized libraries con be programmed in order to
work in a more organized and easier way.

• Explore discretizations of other differential operators different from the Laplace
operator. For instance, in [5] and [4] an scheme to solve Darcy Flow Equation is
presented.

• Explore other domains as surfaces in R3 or curves in the plane or space.

• Explore other boundary conditions other than Dirichlet’s.

I would like to thank Juan Parra for providing LaTex template for this project.
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