January 30, 2025*

The numbers of statements/pages/etc. in the textbook are marked with a [†]. E.g., Section 1.7^{\dagger} means that 1.7 is the same number as in the textbook, page 70^{\dagger} refers to page 70 of the textbook.

Contents

0	Terminology	1
1	Chapter 1^{\dagger} : Complex Numbers 1.7 Section 1.7 ^{\dagger} : The Riemann sphere and stereographic projection	2 2
2	Chapter 2^{\dagger} : Analytic Functions2.2Section 2.2^{\dagger} : Limits and Continuity	2 2
	2.3Section 2.3^{\dagger} : Analyticity2.4Section 2.4^{\dagger} : The Cauchy-Riemann Equations2.5Section 2.5^{\dagger} : Harmonic functions	2 2 3

0 Terminology

Here are some of the terms, with a brief description

- in general z stands for a complex number, $z \in \mathbb{C} \subset \widehat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$; z = x + iy denotes its real and imaginary parts (so x, y are real numbers).
- for a complex-valued function we often denote f = u + iv for its real and imaginary components
- $\mathbb{D} := \{z \in \mathbb{C} : |z| < 1\}$ denotes the open unit disk in \mathbb{C} .
- f(z) is differentiable at z_0 means that f has a (complex) derivative at $z_0 \in \mathbb{C}$
- f(z) is analytic at z_0 it is differentiable on a neighborhood of z_0
- $f: \mathbb{C} \to \mathbb{C}$ is an entire function if it analytic on all of \mathbb{C}
- a singular point (a.k.a. singularity) of f is a point where f is not analytic but is the limit of points where f is analytic; e.g. 0 is a singularity of f(z) = 1/z; see page 70^{\dagger}
- a singularity is removable if can redefine the function at that singular point to make it analytic; e.g. 1 for $(z^2 - 1)/(z - 1)$, which equals z + 1 except at z = 1.

^{*}If you find typos/errors/omissions/etc. please let me know, will correct them for a subsequent edition.

1 Chapter 1^{\dagger} : Complex Numbers

- 1.1 The Algebra of Complex Numbers
- 1.2 Point Representation of Complex Numbers
- 1.3 Vectors and Polar Forms
- 1.4 The Complex Exponential
- 1.5 Powers and Roots
- 1.6 Planar Sets
- 1.7 The Riemann Sphere and Stereographic Projection

1.7 Section 1.7^{\dagger} : The Riemann sphere and stereographic projection

Without proof: the stereographic projection preserves angles (i.e., is is *conformal*) and takes circles on the Riemann sphere to circles or lines in the complex plane (see Figure 1.23^{\dagger}).

2 Chapter 2^{\dagger} : Analytic Functions

- 2.1 Functions of a Complex Variable
- 2.2 Limits and Continuity
- 2.3 Analyticity
- 2.4 The Cauchy-Riemann Equations
- 2.5 Harmonic Functions

2.2 Section 2.2^{\dagger} : Limits and Continuity

Note the definition of convergence to ∞ on page 62^{\dagger} : $z_n \to \infty \iff |z_n| \to \infty$, and similarly $\lim_{z\to z_0} f(z) = \infty \iff \lim_{z\to z_0} |f(z)| = \infty$. See problem 23^{\dagger} : convergence to infinity corresponds via the stereographic projection to convergence to the North pole.

2.3 Section 2.3^{\dagger} : Analyticity

Definition 2.1 (See e.g. top of page 70^{\dagger})

f is analytic at a point z_0 if is differentiable on a neighborhood of z_0 .

f is *entire* if it is analytic on the whole complex plane.

A singular point (a.k.a. singularity) is a point where f is not analytic but which is the limit of points where f is analytic.

E.g., the complex exponential is an entire function.

2.4 Section 2.4^{\dagger} : The Cauchy-Riemann Equations

"Cauchy-Riemann equations" is usually abbreviated CR. For f = u + iv they are:

$$\begin{cases} \frac{\partial u}{\partial x} = & \frac{\partial v}{\partial y} \\ \frac{\partial u}{\partial y} = & -\frac{\partial u}{\partial x} \end{cases}$$

Remark 2.1 (How to remember the Cauchy-Riemann equations)

• Require that the derivatives of u + iv in the horizontal and vertical directions (i.e, w.r.t x and iy) be equal (see top of page 74[†]).

- Another explanation:
 - Multiplication by a complex number z = a + ib on \mathbb{C} is a linear transformation $\xi \in \mathbb{C} \mapsto z\xi \in \mathbb{C}$. Seeing $\mathbb{C} = \mathbb{R}^2$, this linear transformation has a 2 × 2 matrix, which is (recall the linear algebra course)

$$(2.1) \qquad \qquad \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$$

This gives a *representation* of \mathbb{C} as 2×2 matrices with real entries, consistent with both addition and multiplication in \mathbb{C} (that is, \mathbb{C} is isomorphic to this set of 2×2 matrices)

- CR at z_0 for $f(x + iy) = u + iv \iff$ its Jacobian matrix at z_0 (that is, the matrix of partial derivatives),

 $\begin{pmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{pmatrix}$

is of the form (2.1).

2.5 Section 2.5^{\dagger} : Harmonic functions

Harmonic functions are solution to the Laplace equation; they appear in many physical phenomena.

Theorem 2.2

- If f is complex-analytic, then its real part (and therefore its imaginary part as well) are harmonic.
- Conversely, if u is harmonic on a simply connected domain¹ G then there is a function v on G such that u + iv is complex-analytic.

¹That is, a domain that has "no holes". E.g., \mathbb{C} and \mathbb{D} are simply connected, but \mathbb{D} without the origin or an annulus are not simply connected.