\qquad

1. Find the eigenvalues and eigenvectors of the following matrices. Determine whether each matrix is diagonalizable. For those that are diagonalizable, find P such that $P^{-1} A P$ is diagonal.
a. $A=\left[\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right]$
b. $A=\left[\begin{array}{ll}2 & 1 \\ 0 & 3\end{array}\right]$
C. $A=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$
2. Let $B=\left\{\left[\begin{array}{l}1 \\ 2 \\ 4\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 5\end{array}\right]\right\}$, and $x=\left[\begin{array}{c}-2 \\ 2 \\ -2\end{array}\right]$

10 pts

Assume \mathbf{x} is in the span of B. Find the coordinates of \mathbf{x} with respect to the basis B.
3. If $\boldsymbol{A}=\left[\begin{array}{ll}2 & 1 \\ 1 & 3\end{array}\right], T\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=\mathbf{A}\left[\begin{array}{l}x \\ y\end{array}\right]$, and $D=\{(x, y): 0 \leq x \leq 1,0 \leq y \leq 1\}:$
a. Sketch $T(D)$ and label the vertices. 4 pts
b. What is the area of $T(D) ? 6$ pts
4. Let $A=\left(\begin{array}{rrrrr}1 & 3 & 3 & 3 & 4 \\ 2 & 6 & 5 & 7 & 10 \\ -1 & -3 & -4 & -2 & -2\end{array}\right)$. Find a basis for each of
$\operatorname{Nul}(A), \operatorname{Col}(A), \operatorname{Row}(A)$, and $\operatorname{Nul}\left(A^{T}\right)$.
24 pts
5. Find $\left[\begin{array}{l}x \\ y\end{array}\right]$ to minimize $\left\|\mathbf{A}\left[\begin{array}{l}x \\ y\end{array}\right]-\mathbf{b}\right\|^{2}$, where $\mathbf{A}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 2 & 0 \\ 0 & 2\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right] .20$ pts

10 pts
\qquad
6. a. Is it possible for a nonhomogeneous system of four equations in six unknowns to have a unique solution for some right-hand side? Explain.

6 pts
b. Is it possible for such a system to have a solution for every right-hand side? Explain.

6 pts
7. Consider this symmetric stochastic matrix:
$A=\left[\begin{array}{ll}.8 & .2 \\ .2 & .8\end{array}\right]$
a. What are the eigenvalues and eigenvectors of A? 12 pts
b. Find the coordinates of $u_{0}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ with respect to the basis of eigenvectors found in part a. 10 pts
C. Find $\lim _{k \rightarrow \infty} A^{k} u_{0}$

12 pts
8. A $3 x 3$ symmetric matrix has a null space of dimension one containing the vector (1,1,1). Find bases and dimensions of the column space, row space, and left null space.
9. Determine whether $\{v, u, w\}$ is linearly dependent or independent.

$$
v=(2,-2,3) \quad u=\left(\begin{array}{lll}
3 & 0, & 4
\end{array}\right) \quad w=(1,-4,2)
$$

12 pts
10. Define "basis". Use a complete sentence (or two). 10 pts
11. Define "linearly independent". Use a complete sentence (or two)

10 pts
12. Find the projection matrix \mathbf{P} that projects any vector $\mathbf{v} \in \mathbf{R}^{3}$ onto the line generated by $\mathbf{b}=(2,-1,2)^{T}$. Find the eigenvalues and eigenvectors of P.

15 pts
Textbook supplementary Exercises:
Ch 3, p. 285: 1价.
Ch 4, p. 262: 1, 3, 5, 7, 9, 11, 12, 13, 14, 15.
Ch 5, p. 326: 1, 3, 5, 7, 9, 12, 13, 14, 17.
Ch 6, p. 390: 1a-q, 3, 4, 5, 6, 7,

