\qquad
NO CALCULATORS!

1. Find the eigenvalues and eigenvectors of the following matrices. Determine whether each matrix is diagonalizable. For those that are diagonalizable, find P such that $P^{-1} A P$ is diagonal.

32 pts
a. $A=\left[\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right]$ Upper triangular, $\lambda=2,2$. Eigenspace for $\lambda=2$
is the span of $\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right]\right\}$. Note $\operatorname{rank}(A-2 I)$ is 1 . A is not diagonalizable.
b. $A=\left[\begin{array}{ll}2 & 1 \\ 0 & 3\end{array}\right]$ Upper triangular, $\lambda=2,3$.

Eigenspace for $\lambda=2$ is the span of $\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right]\right\}=\operatorname{Nul}(A-2 I)$.
Eigenspace for $\lambda=3$ is the span of $\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}=\operatorname{Nul}(A-3 I)$.
A is diagonalizable with $P=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$.
c. $A=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right] \cdot \operatorname{det}(A-\lambda I)=(\lambda-2)^{2}-1=0$ if $\lambda=2 \pm 1=1,3$.

Eigenspace for $\lambda=1$ is $\operatorname{Nul}(A-I)=\operatorname{Span}\left\{\left[\begin{array}{c}-1 \\ 1\end{array}\right]\right\}$.
Eigenspace for $\lambda=3$ is $\operatorname{Nul}(A-3 I)=\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}$.
A is diagonalizable with $P=\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]$.
2. Let $B=\left\{\left[\begin{array}{l}1 \\ 2 \\ 4\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 5\end{array}\right]\right\}$, and $x=\left[\begin{array}{c}-2 \\ 2 \\ -2\end{array}\right]$

12 pts
10 pts

Assume \mathbf{x} is in the span of B. Find the coordinates of \mathbf{x} with respect to the basis B.
Solve $c_{1}\left[\begin{array}{l}1 \\ 2 \\ 4\end{array}\right]+c_{2}\left[\begin{array}{l}2 \\ 1 \\ 5\end{array}\right]=\boldsymbol{x}=\left[\begin{array}{c}-2 \\ 2 \\ -2\end{array}\right]$. Solution $c_{1}=2, c_{2}=-2$. The coordinate vector with respect to B is $\left[\begin{array}{c}2 \\ -2\end{array}\right]$
\qquad
3. If $\boldsymbol{A}=\left[\begin{array}{ll}2 & 1 \\ 1 & 3\end{array}\right], T\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=\mathbf{A}\left[\begin{array}{l}x \\ y\end{array}\right]$, and $D=\{(x, y): 0 \leq x \leq 1,0 \leq y \leq 1\}$:
a. Sketch $T(D)$ and label the vertices.

4 pts $T(D)$ is a filled parallelogram with vertices (0,0),
$(2,1)$, $(1,3)$, and $(3,4)$.
b. What is the area of $T(D)$?

6 pts

$$
\text { Area }=|\operatorname{det}(A)|=5
$$

4. Let $A=\left(\begin{array}{rrrrr}1 & 3 & 3 & 3 & 4 \\ 2 & 6 & 5 & 7 & 10 \\ -1 & -3 & -4 & -2 & -2\end{array}\right)$. Find a basis for each of

Nul(A), Col(A), Row(A), and Nul(A ${ }^{T}$.
24 pts
First find the reduced echelon form for A. To find a basis for $\operatorname{Nul}\left(A^{T}\right)$, augment with an unknown column vector $b \in \boldsymbol{R}^{3}$:
$[A \mid b]=\left[\begin{array}{cccccc}1 & 3 & 3 & 3 & 4 & b_{1} \\ 2 & 6 & 5 & 7 & 10 & b_{2} \\ -1 & -3 & -4 & -2 & -2 & b_{3}\end{array}\right]$. The reduced echelon form of this is:
$R=\left[\begin{array}{cccccc}1 & 3 & 0 & 6 & 10 & -5 b_{1}+3 b_{2} \\ 0 & 0 & 1 & -1 & -2 & 2 b_{1}-b_{2} \\ 0 & 0 & 0 & 0 & 0 & 3 b_{1}-b_{2}+b_{3}\end{array}\right]$. The expression $3 b_{1}-b_{2}+$ b_{3} tells us that the third row of R is $3 a_{1}-a_{2}+a_{3}$, where a_{1}, a_{2}, a_{3} are the rows of [A|b]. This means that the vector $(3,-1,1)$ is orthogonal to each of the columns of A. Since A has rank 2, Col(A) is a subspace of R^{3} with dimension 2. $\operatorname{So}(\operatorname{Col}(A))^{\perp}=\operatorname{Nul}\left(A^{T}\right)$ has dimension $3-2=1$. Thus $\{(3,-1,1)\}$ is a basis for $\operatorname{Nul}\left(A^{T}\right)$. (This won't be on the exam).

Nul(A): x_{1} and x_{3} are basic variables, $\mathrm{x}_{2}, \mathrm{x}_{4}, \mathrm{x}_{5}$ are free variables. Choose one free variable to be 1, and set the other free variables to 0. Then find the values of the basic variables that solve $R X=0$. This produces 3 independent vectors in $\mathrm{Nul}(\mathrm{R})=\mathrm{Nul}(\mathrm{A}):$
$s_{1}=\left[\begin{array}{c}-3 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right], s_{2}=\left[\begin{array}{c}-6 \\ 0 \\ 1 \\ 1 \\ 0\end{array}\right], s_{3}=\left[\begin{array}{c}-10 \\ 0 \\ 2 \\ 0 \\ 1\end{array}\right]$. Then $\left\{s_{1}, s_{2}, s_{3}\right\}$ is a basis for $N u l(A)$. Next, the pivot columns of A form a basis for Col(A):
$u_{1}=\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right], u_{2}=\left[\begin{array}{c}3 \\ 6 \\ -3\end{array}\right]$. Check that these are orthogonal to $\left[\begin{array}{c}3 \\ -1 \\ 1\end{array}\right]$.
The non zero rows of R form a basis for Row(A).
\qquad

$$
r_{1}=\left[\begin{array}{c}
1 \\
3 \\
0 \\
6 \\
10
\end{array}\right], r_{2}=\left[\begin{array}{c}
0 \\
0 \\
1 \\
-1 \\
-2
\end{array}\right]
$$

5. Find $\left[\begin{array}{l}x \\ y\end{array}\right]$ to minimize $\left\|\mathbf{A}\left[\begin{array}{l}x \\ y\end{array}\right]-\mathbf{b}\right\|^{2}$, where $\mathbf{A}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 2 & 0 \\ 0 & 2\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right] .20$ pts This won't be on the exam, but the answer is:

$$
x=\left[\begin{array}{l}
1 \\
0 \\
2 \\
0
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right] \frac{1}{1^{2}+2^{2}}=\frac{7}{5}, y=\left[\begin{array}{l}
0 \\
1 \\
0 \\
2
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right] \frac{1}{1^{2}+2^{2}}=\frac{10}{5}=2 \text {. We want } A\left[\begin{array}{l}
x \\
y
\end{array}\right] \text { to be the }
$$

orthogonal projection of \mathbf{b} onto Col(A). Because the columns of this A are orthogonal to each other, this projection is the sum of the projections of \mathbf{b} onto each column.
6. a. Is it possible for a nonhomogeneous system of four equations in six unknowns to have a unique solution for some right-hand side? Explain.

Answer: No. The maximum rank of the coefficient matrix A is 4, and there are 6 unknowns, so the dimension of Nul(A) is at least 2 , so no solution is unique for any b.
b. Is it possible for such a system to have a solution for every right-hand side? Explain.

6 pts
Answer: Yes. A could have rank 4, so that $\operatorname{Col}(A)=\mathbf{R}^{4}$.
\qquad
7. Consider this symmetric stochastic matrix:
$A=\left[\begin{array}{ll}.8 & .2 \\ .2 & .8\end{array}\right]$
a. What are the eigenvalues and eigenvectors of A? 12 pts Solution: A stochastic matrix always has one eigenvalue that is 1. The other eigenvalue can be found by using the efact that the sum of all eigenvalues (including multiplicities) equals the trace of the matrix. So
$\lambda_{1}+\lambda_{2}=.8+.8=1.6$. Since $\lambda_{1}=1$, $\lambda_{2}=0.6$. An eigenvector for $\lambda_{1}=1$ is in the null space of $A-I=\left[\begin{array}{cc}-.2 & .2 \\ .2 & -.2\end{array}\right]$. One solution is $\left[\begin{array}{l}1 \\ 1\end{array}\right]$. We should have expected this because $\left[\begin{array}{ll}1 & 1\end{array}\right] A=\left[\begin{array}{ll}1 & 1\end{array}\right]$ for any stochastic 2×2 matrix A, and this A is stochastic and symmetric.
An eigenvector for $\lambda_{2}=0.6$ is $\left[\begin{array}{c}-1 \\ 1\end{array}\right]$
b. Find the coordinates of $u_{0}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ with respect to the
basis of eigenvectors found in part a.
10 pts
Solution: Since the eigenvectors are orthogonal, we can compute the coordinates with Theorem 5, p. 339:
$\left[\begin{array}{l}1 \\ 0\end{array}\right]=\frac{\left(\left[\begin{array}{l}1 \\ 0\end{array}\right] \cdot\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)}{\left[\begin{array}{l}1 \\ 1\end{array}\right] \cdot\left[\begin{array}{l}1 \\ 1\end{array}\right]} \cdot\left[\begin{array}{l}1 \\ 1\end{array}\right]+\frac{\left(\left[\begin{array}{l}1 \\ 0\end{array}\right] \cdot\left[\begin{array}{c}-1 \\ 1\end{array}\right]\right)}{\left[\begin{array}{l}1 \\ 1\end{array}\right] \cdot\left[\begin{array}{c}-1 \\ 1\end{array}\right]} \cdot\left[\begin{array}{c}-1 \\ 1\end{array}\right]=\frac{1}{2}\left[\begin{array}{l}1 \\ 1\end{array}\right]+\frac{-1}{2}\left[\begin{array}{c}-1 \\ 1\end{array}\right]$.
So the desired coordinates are $c_{1}=\frac{1}{2}, c_{2}=\frac{-1}{2}$.
C. Find $\lim _{k \rightarrow \infty} A^{k} u_{0}$

12 pts
Solution: $A^{k} u_{0}=A^{k}\left(\frac{1}{2}\left[\begin{array}{l}1 \\ 1\end{array}\right]+\frac{-1}{2}\left[\begin{array}{c}-1 \\ 1\end{array}\right]\right)=\frac{1}{2} 1^{k}\left[\begin{array}{l}1 \\ 1\end{array}\right]+\frac{-1}{2}(.6)^{k}\left[\begin{array}{c}-1 \\ 1\end{array}\right] \rightarrow\left[\begin{array}{c}\frac{1}{2} \\ \frac{1}{2}\end{array}\right]$ as $k \rightarrow \infty$.
8. A $3 x 3$ symmetric matrix has a null space of dimension one containing the vector (1,1,1). Find bases and dimensions of the column space, row space, and left null space.
Solution: The row space of A is the orthogonal complement of the null space; $\operatorname{Row}(A)=(\operatorname{Nul}(A))^{\perp}$. The dimension of the row space is the rank of $A=3-\operatorname{dim}(\operatorname{Nul}(A))=3-1=2$. So we need 2 nonzero vectors orthogonal to $(1,1,1)$. For example, $\beta=\left\{\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right],\left[\begin{array}{c}0 \\ -1 \\ 1\end{array}\right]\right\}$ is a basis for Row(A). Since A is symmetric, β is also a basis for Col(A). For the same reason the left null space ($\operatorname{Nul}\left(A^{T}\right)$ is the same as $\operatorname{Nul}(A)$ and $\{(1,1,1)\}$ is a basis for the left null space.
\qquad
9. Determine whether $\{v, u, w\}$ is linearly dependent or independent.

$$
v=(2,-2,3) \quad u=\left(\begin{array}{lll}
3 & 0,4
\end{array}\right) \quad w=(1,-4,2) \quad 12 \text { pts }
$$

Solution: Construct a matrix A with u, v, and w as column vectors. Put w first to get a 1 in the first pivot
position: $A=\left[\begin{array}{ccc}1 & 3 & 2 \\ -4 & 0 & -2 \\ 2 & 4 & 3\end{array}\right]$. The reduced echelon form of A is:
$R=\left[\begin{array}{ccc}1 & 0 & 1 / 2 \\ 0 & 1 & 1 / 2 \\ 0 & 0 & 0\end{array}\right]$. A nonzero vector in $\operatorname{Nul}(\mathrm{R})=\operatorname{Nul}(\mathrm{A})$ is $\left[\begin{array}{c}-1 \\ -1 \\ 2\end{array}\right]$.
So u, v, and w are linearly dependent, $-w-u+v=0$.
10. Define "basis". Use a complete sentence (or two). 10 pts A subset β of a vector space V is a basis for V if β spans V and β is linearly independent.
11. Define "linearly independent". Use a complete sentence (or two)

10 pts
A subset $\beta=\left\{v_{1}, \cdots, v_{p}\right\}$ of a vector space V is linearly
independent if $c_{1} v_{1}+\cdots+c_{p} v_{p}=0$ implies $c_{j}=0$ for $j=1, \cdots, p$.
See also section 4.3.
12. Find the projection matrix \mathbf{P} that projects any vector $\mathbf{v} \in \mathbf{R}^{3}$ onto the line generated by $\mathbf{b}=(2,-1,2)^{T}$. Find the eigenvalues and eigenvectors of P.

15 pts
Solution: For any \mathbf{v} in \mathbf{R}^{3}, the projection of \mathbf{v} onto the line
generated by \boldsymbol{b} is $\left(\frac{v \cdot \boldsymbol{b}}{\boldsymbol{b} \cdot \boldsymbol{b}}\right) \boldsymbol{b}=\frac{\boldsymbol{b} \boldsymbol{b}^{T}}{\boldsymbol{b}^{T} \boldsymbol{b}} \boldsymbol{v}$. So $\left.\boldsymbol{P}=\frac{\boldsymbol{b} \boldsymbol{b}^{T}}{\boldsymbol{b}^{T} \boldsymbol{b}}=\frac{1}{9}\left[\begin{array}{c}2 \\ -1 \\ 2\end{array}\right]\left[\begin{array}{lll}2 & -1 & 2\end{array}\right]\right]=$ $\frac{1}{9}\left[\begin{array}{ccc}4 & -2 & 4 \\ -2 & 1 & -2 \\ 4 & -2 & 4\end{array}\right]$

Textbook supplementary Exercises:
Ch 3, p. 285: 10-p.
Ch 4, p. 262: 1, 3, 5, 7, 9, 11, 12, 13, 14, 15.
Ch 5, p. 326: 1, 3, 5, 7, 9, 12, 13, 14, 17.
Ch 6, p. 390: 1a-q, 3, 4, 5, 6, 7,

