December 12, 2011

FINAL EXAM

NO CALCULATORS!

NAME
ID \#
$\qquad$

1. a. Find the complete solution to the system:
$\mathbf{B X}=\left[\begin{array}{lllll}1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 2 & 2 \\ 2 & 2 & 2 & 4 & 4\end{array}\right]\left[\begin{array}{c}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5}\end{array}\right]=\left[\begin{array}{l}1 \\ 3 \\ 6\end{array}\right]$
12 pts
b. Find a basis for the column space of $B$. Then express each column of $B$ as a combination of the basis. (Hint: B has rank 2)

12 pts
c. Find an equation $a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}=0$ for all vectors $\mathbf{b}=\left(b_{1}, b_{2}, b_{3}\right)$ for which $\mathbf{B X}=\mathbf{b}$ has a solution.

12 pts
3. Let $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ be a linear transformation such that: $T(1,0,0)=(1,2,3), T(0,1,0)=(4,5,6), T(0,0,1)=(7,8,9)$. Find the matrix for T. Hint: Compute $T(x, y, z)$.

9 pts
4. a. Find the eigenvalues and eigenvectors of each of these matrices. Identify which are invertible and/or diagonalizable.

$$
\begin{aligned}
A & =\left[\begin{array}{ll}
3 & 1 \\
0 & 3
\end{array}\right] \\
B & =\left[\begin{array}{cc}
3 & -4 \\
4 & 3
\end{array}\right]
\end{aligned}
$$

$C=\left[\begin{array}{ll}4 & 2 \\ 4 & 2\end{array}\right]$
6 pts
$D=\left[\begin{array}{ll}5 & 5 \\ 1 & 1\end{array}\right]$
6 pts
$E=\left[\begin{array}{cc}2 & 1 \\ -17 & 4\end{array}\right]$
6 pts
$F=\left[\begin{array}{cc}2 & 1 \\ -1 & 4\end{array}\right]$
6 pts
b. Organize the matrices $A-F$ in disjoint sets of similar matrices.

8 pts
$\qquad$
5. a. Find the matrix $P_{1}$ that projects $(x, y, z)$ onto the line through (1,2,2).
b. Find three eigenvalues and three independent eigenvectors for $P_{1}$. 12 pts
c. Find the matrix $P_{2}$ that projects $(x, y, z)$ onto the plane orthogonal to (1,2,2).

15 pts
6. This problem uses least squares to find the curve $y=a x+b x^{2}$ that best fits these 4 points in the plane: $\left(x_{1}, y_{1}\right)=(-2,2),\left(x_{2}, y_{2}\right)=(-1,1),\left(x_{3}, y_{3}\right)=(1,0),\left(x_{4}, y_{4}\right)=(2,2)$.
a. Write down 4 equations $a x_{i}+b x_{i}^{2}=y_{i}, \mathrm{i}=1,2,3,4$, that would be true if the line actually went through all four points. 8 pts
b. Now write those four equations in the form $\mathbf{A}\left[\begin{array}{l}a \\ b\end{array}\right]=\mathbf{y}$

4 pts
c. Now find $\left[\begin{array}{l}\hat{a} \\ \hat{b}\end{array}\right]$ that minimizes $\left\|\mathbf{A}\left[\begin{array}{l}a \\ b\end{array}\right]-\mathbf{y}\right\|^{2}$.

14 pts
7. Consider this symmetric Markov matrix:
$A=\left[\begin{array}{ll}.4 & .6 \\ .6 & .4\end{array}\right]$
a. What are the eigenvalues of $A$ ?

8 pts
b. Find $\lim _{k \rightarrow \infty} \mathbf{A}^{k} \mathbf{u}_{0}$ with $u_{0}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$

12 pts
8. $\mathbf{A}=\left[\begin{array}{cccc}1 & 1 & 1 & 1 \\ 1 & 1+x & 1+x & 1+x \\ 1 & 1+x & y+x & y+x \\ 1 & 1+x & y+x & y+x-z\end{array}\right]$

Find $\operatorname{det}(\mathbf{A})$.
12 pts

