		AL EXAM	NAME ID #	_
Decei	mber 12, 2011 NO CAL	CULATORS!	ID #	
1.	a. Find the complete so	olution to the	system:	
	$\mathbf{BX} = \begin{bmatrix} 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 2 & 2 \\ 2 & 2 & 2 & 4 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix}$	$= \begin{bmatrix} 1\\3\\6 \end{bmatrix}$	-	12 pts
	b. Find a basis for the each column of B as a co has rank 2)		the basis. (Hint:	
	c. Find an equation a_1b_1	$+a_2b_2+a_3b_3=0$ f	or all vectors	
	$\mathbf{b} = (b_1, b_2, b_3)$ for which BX			12 pts
3.	Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linea T(1,0,0) = (1,2,3), T(0,1,0) = (4,5,0) T. Hint: Compute $T(x,y,z)$	6), $T(0,0,1) = (7,8,9)$		for 9 pts
4.	a. Find the eigenvalues matrices. Identify which diagonalizable.	_		hese
	$A = \left[\begin{array}{cc} 3 & 1 \\ 0 & 3 \end{array} \right]$			6 pts
	$B = \left[\begin{array}{cc} 3 & -4 \\ 4 & 3 \end{array} \right]$			6 pts
	$C = \left[\begin{array}{cc} 4 & 2 \\ 4 & 2 \end{array} \right]$			6 pts
	$D = \left[\begin{array}{cc} 5 & 5 \\ 1 & 1 \end{array} \right]$			6 pts
	$E = \left[\begin{array}{cc} 2 & 1 \\ -17 & 4 \end{array} \right]$			6 pts
	$F = \left[\begin{array}{cc} 2 & 1 \\ -1 & 4 \end{array} \right]$			6 pts

b. Organize the matrices A-F in disjoint sets of similar matrices. 8 pts 5. a. Find the matrix P_1 that projects (x,y,z) onto the line through (1,2,2). 10 pts

b. Find three eigenvalues and three independent eigenvectors for P_1 . 12 pts

NAME

4 pts

c. Find the matrix P_2 that projects (x,y,z) onto the plane orthogonal to (1,2,2). 15 pts

6. This problem uses least squares to find the curve $y = ax + bx^2$ that best fits these 4 points in the plane: $(x_1, y_1) = (-2, 2)$, $(x_2, y_2) = (-1, 1)$, $(x_3, y_3) = (1, 0)$, $(x_4, y_4) = (2, 2)$.

a. Write down 4 equations $ax_i + bx_i^2 = y_i$, i = 1, 2, 3, 4, that would be true if the line actually went through all four points. 8 pts

b. Now write those four equations in the form $\mathbf{A}\begin{bmatrix} a\\b \end{bmatrix} = \mathbf{y}$

c. Now find
$$\begin{bmatrix} \hat{a} \\ \hat{b} \end{bmatrix}$$
 that minimizes $\left\| \mathbf{A} \begin{bmatrix} a \\ b \end{bmatrix} - \mathbf{y} \right\|^2$. 14 pts

7. Consider this symmetric Markov matrix:

$$A = \begin{bmatrix} .4 & .6 \\ .6 & .4 \end{bmatrix}$$
a. What are the eigenvalues of A? 8 pts
b. Find $\lim_{k \to \infty} \mathbf{A}^k \mathbf{u}_0$ with $u_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ 12 pts
8. $\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1+x & 1+x & 1+x \\ 1 & 1+x & y+x & y+x \\ 1 & 1+x & y+x & y+x-z \end{bmatrix}$
Find det(A). 12 pts