MATH 3331 HOMEWORK

PROFESSOR WAGNER

(1) The motion of a spring-mass system is modeled by the equation:

$$
x^{\prime \prime}(t)+\mu x^{\prime}(t)+25 x(t)=0 .
$$

Find all positive values of μ for which this system is
(a) underdamped: $0<\mu<5$
(b) critically damped: $\mu=5$
(c) overdamped: $\mu>5$
(d) What is the general solution for the critically damped case?

$$
x(t)=c_{1} e^{-5 t}+c_{2} t e^{-5 t} .
$$

(2) Find a particular solution:
(a) $y^{\prime \prime}+5 y^{\prime}+4 y=3 e^{2 t}+5 e^{4 t}$

Solution: Try $y=A e^{2 t}+B e^{4 t}$. Substitute in the differential equation to get:

$$
A e^{2 t}(4+10+4)+B e^{4 t}(16+20+4)=3 e^{2 t}+5 e^{4 t}
$$

Then $A=\frac{3}{18}=\frac{1}{6}$ and $B=\frac{5}{40}=\frac{1}{8}$, so

$$
y_{p}(t)=\frac{1}{6} e^{2 t}+\frac{1}{8} e^{4 t} .
$$

(b) $y^{\prime \prime}+9 y=t^{2}$

Solution: Try $y=A t^{2}+B t+C /$ Substitute in the differential equation to get:

$$
A\left(2+9 t^{2}\right)+9 B t+9 C=t^{2} .
$$

Equating like terms, we get $9 A t^{2}=t^{2}, 9 B t=0,2 A+9 C=0$, so $A=\frac{1}{9}, B=0$, $C=-\frac{2}{9} A=-\frac{2}{81}$. Thus

$$
y_{p}(t)=\frac{1}{9} t^{2}-\frac{2}{81} .
$$

(c) $y^{\prime \prime}+4 y=\tan (2 t)$

Solution: Use "variation of parameters." The general solution to $y^{\prime \prime}+4 y=0$ is $y=c_{1} \cos (2 t)+c_{2} \sin (2 t)$. Try $y_{p}(t)=c_{1}(t) \cos (2 t)+c_{2}(t) \sin (2 t)$. Substitute in

[^0]the differential equation $y^{\prime \prime}+4 y=\sec (2 t)$, assume $c_{1}^{\prime}(t) \cos (2 t)+c_{2}^{\prime}(t) \sin (2 t)=0$ and find that $c_{1}^{\prime}(t)(-2 \sin (2 t))+c_{2}^{\prime}(t) 2 \cos (2 t)=\sec (2 t)$. Then
\[

\left($$
\begin{array}{cc}
\cos (2 t) & \sin (2 t) \\
-2 \sin (2 t) & 2 \cos (2 t)
\end{array}
$$\right)\binom{c_{1}^{\prime}(t)}{c_{2}^{\prime}(t)}=\binom{0}{\sec (2 t)}
\]

Divide the second component of this equation by 2 to obtain:

$$
\left(\begin{array}{cc}
\cos (2 t) & \sin (2 t) \\
-\sin (2 t) & \cos (2 t)
\end{array}\right)\binom{c_{1}^{\prime}(t)}{c_{2}^{\prime}(t)}=\binom{0}{\sec (2 t) / 2}
$$

The matrix $\left(\begin{array}{cc}\cos (2 t) & \sin (2 t) \\ -\sin (2 t) & \cos (2 t)\end{array}\right)$ is a rotation matrix with inverse $\left(\begin{array}{cc}\cos (2 t) & -\sin (2 t) \\ \sin (2 t) & \cos (2 t)\end{array}\right)$. So

$$
\binom{c_{1}^{\prime}(t)}{c_{2}^{\prime}(t)}=\left(\begin{array}{cc}
\cos (2 t) & -\sin (2 t) \\
\sin (2 t) & \cos (2 t)
\end{array}\right)\binom{0}{\sec (2 t) / 2}=\binom{-\tan (2 t) / 2}{1 / 2}
$$

Then

$$
\begin{gathered}
c_{1}(t)=\int-\tan (2 t) / 2 d t=\frac{1}{4} \ln |\cos (2 t)| \\
c_{2}(t)=\int 1 / 2 d t=\frac{1}{2} t
\end{gathered}
$$

so

$$
y_{p}(t)=\frac{1}{4} \ln |\cos (2 t)| \cos (2 t)+\frac{1}{2} t \sin (2 t)
$$

[^0]: Date: March 1, 2018.

