MATH 3331 HOMEWORK DUE APRIL 18

PROFESSOR WAGNER

(1) Verify that $\left\{\mathbf{y}_{1}(t), \mathbf{y}_{2}(t)\right\}$ is a linearly independent set of solutions to the given system:

$$
\mathbf{y}_{1}(t)=\binom{-2 e^{3 t}}{e^{3 t}}, \quad \mathbf{y}_{2}(t)=\binom{-e^{2 t}}{e^{2 t}}, \quad \mathbf{y}^{\prime}(t)=\left(\begin{array}{cc}
4 & 2 \\
-1 & 1
\end{array}\right) \mathbf{y}(t)
$$

Then find the solution $\mathbf{y}(t)$ to this system with $\mathbf{y}(0)=\binom{1}{-2}$.
(2) Let $A=\left(\begin{array}{llll}3 & 1 & 0 & 0 \\ 0 & 3 & 1 & 0 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 3\end{array}\right)$.
(a) Calculate $A-3 I$.
(b) Calculate $(A-3 I)^{2}$.
(c) Calculate $(A-3 I)^{3}$.
(d) Calculate $(A-3 I)^{4}$.
(e) Use $A=(A-3 I)+3 I$ to calculate $e^{A t}=\sum_{n=0}^{\infty} \frac{A^{n} t^{n}}{n!}=e^{3 I t} e^{A-3 I t}$. (Just calculate $\left.e^{3 I t} e^{A-3 I t}\right)$.
(3) Find the general solution of:
(a) $\mathbf{x}^{\prime}(t)=\left(\begin{array}{ll}3 & 1 \\ 2 & 2\end{array}\right) \mathbf{x}$ and find the solution with $\mathbf{x}(0)=\binom{3}{0}$.
(b) $\mathbf{x}^{\prime}(t)=\left(\begin{array}{cc}5 & -1 \\ 4 & 1\end{array}\right) \mathbf{x}$ and find the solution with $\mathbf{x}(0)=\binom{5}{7}$.
(c) $\mathbf{x}^{\prime}(t)=\left(\begin{array}{cc}3 & 4 \\ -4 & 3\end{array}\right) \mathbf{x}$ and find the solution with $\mathbf{x}(0)=\binom{2}{5}$.
(d) $\mathbf{x}^{\prime}(t)=\left(\begin{array}{ll}3 & -5 \\ 5 & -3\end{array}\right) \mathbf{x}$ and find the solution with $\mathbf{x}(0)=\binom{0}{4}$.
(4) Use pplane to draw phase portraits of the systems in $\# 3$. Have pplane sketch 4 distinct solution curves.

