MATH 3334 HOMEWORK #3 DUE SEPT. 11

PROFESSOR DAVID WAGNER

- (1) Give an example of a closed set $S \subset \mathbf{R}$ and a continuous function $f: \mathbf{R} \to \mathbf{R}$ such that f(S) is not closed.
- (2) Give an example of a bounded set $S \subset \mathbf{R} \setminus \{0\}$ and a real valued function f that is defined and continuous on $\mathbf{R} \setminus \{0\}$ such that f(s) is not bounded.
- (3) Show that if $f : \mathbf{R}^n \to \mathbf{R}^m$ is continuous everywhere and $S \subset \mathbf{R}^n$ is bounded, then f(S) is bounded.
- (4) Suppose $S \subset \mathbf{R}^n$ is compact, $f : S \to \mathbf{R}$ is continuous, and $f(\mathbf{x}) > 0$ for every $\mathbf{x} \in S$. Show that there is a number c > 0 such that $f(\mathbf{x}) \ge c$ for every $\mathbf{x} \in S$.
- (5) (A generalization of the nested interval theorem) Suppose $\{S_k\}$ is a sequence of nonempty compact subsets of \mathbb{R}^n such that $S_1 \supset S_2 \supset \S_3 \supset \ldots$ Show that $\bigcap_{k=1}^{\infty} S_k \neq \phi$. (This can be done with either the Bolzano-Weierstrass theorem of the Heine-Borel theorem. Can you find both proofs?)