Find the derivative of each of the following functions:
(1) $f(x, y, z)=x^{y}$
(2) $f(x)=x^{x}$
(3) $f(x, y, z)=\sin (x \sin (y))$
(4) $f(x, y, z)=\sin (x \sin (y \sin (z)))$
(5) $f(x, y, z)=x^{\left(y^{z}\right)}$
(6) $f(x, y, z)=\left(x^{y}\right)^{z}$
(7) $f(x, y, z)=x^{(y+z)}$
(8) $f(x, y, z)=(x+y)^{z}$
(9) $f(x, y)=\sin (x y)$

Use the Fundamental Theorem of Calculus where needed to find the derivative of:
(10) $f(x, y)=\int_{a}^{x+y} g(t) d t$
(11) $f(x, y)=\int_{a}^{x y} g(t) d t$
(12) $f(x, y, z)=\int_{x y}^{\sin (x \sin (y \sin (z)))}$
(13) A function $f^{\prime \prime} \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}$ is bilinear if for all $x, y \in \mathbb{R}^{n}$ and all $w, z \in \mathbb{R}^{m}$, and all $a \in \mathbb{R}$:

- $f(x+a y, z)=f(x, z)+a f(y, z)$
- $f(x, w+a z)=f(x, w)+a f(x, z)$
(a) Prove that if f is bilinear, then

$$
\begin{equation*}
\lim _{(h, k) \rightarrow(0,0)} \frac{|f(h, k)|}{|(h, k)|}=0 . \tag{0.1}
\end{equation*}
$$

(b) Prove that $D f(a, b) \cdot(h, k)=f(a, k)+f(h, y)$.

