Find the derivative of each of the following functions:

(1)
$$f(x, y, z) = x^{y}$$

(2) $f(x) = x^{x}$
(3) $f(x, y, z) = \sin(x \sin(y))$
(4) $f(x, y, z) = \sin(x \sin(y \sin(z)))$
(5) $f(x, y, z) = x^{(y^{z})}$
(6) $f(x, y, z) = (x^{y})^{z}$
(7) $f(x, y, z) = x^{(y+z)}$
(8) $f(x, y, z) = (x + y)^{z}$
(9) $f(x, y) = \sin(xy)$
Use the Fundamental Theorem of Calculus where needed to find the derivative of:
(10) $f(x, y) = \int_{a}^{x+y} g(t) dt$
(11) $f(x, y) = \int_{a}^{xy} g(t) dt$
(11) $f(x, y) = \int_{a}^{xy} g(t) dt$

(12) $f(x, y, z) = \int_{xy}^{\sin(x \sin(y \sin(z)))}$ (13) A function $f^{"}\mathbb{R}^{n} \times \mathbb{R}^{m} \to \mathbb{R}$ is *bilinear* if for all $x, y \in \mathbb{R}^{n}$ and all $w, z \in \mathbb{R}^{m}$, and all $a \in \mathbb{R}$:

•
$$f(x + ay, z) = f(x, z) + af(y, z)$$

•
$$f(x, w + az) = f(x, w) + af(x, z)$$

(a) Prove that if f is bilinear, then

(0.1)
$$\lim_{(h,k)\to(0,0)} \frac{|f(h,k)|}{|(h,k)|} = 0.$$
(b) Prove that $Df(a,b) \cdot (h,k) = f(a,k) + f(h,y).$