Find the derivative of each of the following functions:

(1)
$$f(x, y, z) = x^y$$
; $Df(x, y, z) = (yx^{y-1}, x^y \ln(x), 0)$

(2)
$$f(x) = x^x$$
; $f'(x) = x^x(\ln(x) + 1)$.

(3)
$$f(x, y, z) = \sin(x \sin(y));$$

 $Df(x, y, z) = \cos(x \sin(y)) * (\sin(y), x \cos(y), 0).$

(4)
$$f(x, y, z) = \sin(x \sin(y \sin(z)))$$

 $Df(x, y, z) = \cos(x \sin(y \sin(z))) * (\sin(y \sin(z)), x \cos(y \sin(z)) * \sin(z), x \cos(y \sin(z)) *$
 $y \cos(z)$.

(5)
$$f(x, y, z) = x^{(y^z)}$$
; $f(x, y, x) = \exp(\ln(x) \exp(z \ln(y)))$.
 $Df(x, y, z) = x^{(y^z)} \left(\frac{y^z}{x}, \ln(x)y^z * \frac{z}{y}, \ln(x)\ln(y)y^z\right)$
(6) $f(x, y, z) = (x^y)^z$; $f(x, y, x) = \exp(zy\ln(x))$

(6)
$$f(x, y, z) = (x^y)^z$$
; $f(x, y, x) = \exp(zy \ln(x))$
 $Df(x, y, z) = (x^y)^z * (\frac{zy}{x}, z \ln(x), y \ln(x)).$

(7)
$$f(x, y, z) = x^{(y+z)}$$
; $f(x, y, z) = \exp((y+z)\ln(x))$.
 $Df(x, y, z) = x^{(y+z)} * (\frac{y+z}{x}, \ln(x), \ln(x))$.

(8)
$$f(x,y,z) = (x+y)^z$$
; $f(x,y,z) = \exp(z\ln(x+y))$.
 $Df(x,y,z) = (x+y)^z * \left(\frac{z}{x+y}, \frac{z}{x+y}, \ln(x+y)\right)$.

(9)
$$f(x,y) = \sin(xy); \quad Df(x,y) = \cos(xy)(y,x).$$

Use the Fundamental Theorem of Calculus where needed to find the derivative of:

(10)
$$f(x,y) = \int_a^{x+y} g(t) dt$$
 (*g* continuous at $x + y$):
 $Df(x,y) = g(x+y) * (1,1).$

(11)
$$f(x,y) = \int_a^{xy} g(t) dt$$
 (g continuous at xy): $Df(x,y) = g(xy) * (y,x)$

(12)
$$f(x,y,z) = \int_{xy}^{\sin(x\sin(y\sin(z)))} g(t) dt$$
; g is continuous at endpoints. Let $u = y\sin(z)$

$$Df(x, y, z) = g(\sin(x\sin(u))) * (\cos(x\sin(u)))$$

$$* (\sin(u), x\cos(u) * \sin(z), x\cos(u) * y\cos(z)) - g(xy) * (y, x, 0).$$

- (13) A function $f: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$ is bilinear if for all \mathbf{x} , $\mathbf{y} \in \mathbb{R}^n$ and all \mathbf{w} , $\mathbf{z} \in \mathbb{R}^m$, and all $a \in \mathbb{R}$:
 - $f(\mathbf{x} + a\mathbf{y}, \mathbf{z}) = f(\mathbf{x}, \mathbf{z}) + af(\mathbf{y}, \mathbf{z})$
 - $f(\mathbf{x}, \mathbf{w} + a\mathbf{z}) = f(\mathbf{x}, \mathbf{w}) + af(\mathbf{x}, \mathbf{z})$
 - (a) Prove that if f is bilinear, then

$$\lim_{(\mathbf{h}, \mathbf{k}) \to (0, 0)} \frac{|f(\mathbf{h}, \mathbf{k})|}{|(\mathbf{h}, \mathbf{k})|} = 0.$$

Proof. Let $(\mathbf{e}_1, \dots, \mathbf{e}_n)$ be a basis for \mathbb{R}^n , and let $\mathbf{u}_1, \dots, \mathbf{u}_m$ be a basis for \mathbb{R}^m . Then if $\mathbf{h} = \sum_{i=1}^n h_i \mathbf{e}_i$ and $\mathbf{k} = \sum_{j=1}^m k_j \mathbf{u}_j$,

$$f(\mathbf{h}, \mathbf{k}) = \sum_{i=1}^{n} \sum_{j=1}^{m} h_i k_j f(\mathbf{e}_i, \mathbf{u}_j)$$

Let $M = \max |f(\mathbf{e}_i, \mathbf{u}_j)|$. Then $|f(\mathbf{h}, \mathbf{k})| \leq M \sum_{i=1}^n \sum_{j=1}^m |h_i| |k_j|$. This equals $M \sum_{i=1}^n |h_i| \sum_{j=1}^m |k_j|$. By the Schwartz inequality this is $\leq M \sqrt{n} \|\mathbf{h}\| \sqrt{m} \|\mathbf{k}\| = C \|\mathbf{h}\| \|\mathbf{k}\|$. Then

$$\frac{|f(\mathbf{h}, \mathbf{k})|}{(\mathbf{h}, \mathbf{k})} \le \frac{C \|\mathbf{h}\| \|\mathbf{k}\|}{\sqrt{\|\mathbf{h}\|^2 + \|\mathbf{k}\|^2}} = \frac{C}{\sqrt{\frac{1}{\|\mathbf{k}\|^2} + \frac{1}{\|\mathbf{h}\|^2}}}$$

and this tends to 0 as $\|\mathbf{h}\|^2 + \|\mathbf{k}\|^2 \to 0$.

(b) Prove that (as a linear map $(\mathbf{h}, \mathbf{k}) \to Df(\mathbf{a}, \mathbf{b})(\mathbf{h}, \mathbf{k})$)

$$Df(\mathbf{a}, \mathbf{b})(\mathbf{h}, \mathbf{k}) = f(\mathbf{a}, \mathbf{k}) + f(\mathbf{h}, \mathbf{y}).$$

Proof.

$$f(\mathbf{a} + \mathbf{h}, \mathbf{b} + \mathbf{k}) - f(\mathbf{a}, \mathbf{b}) = f(\mathbf{a}, \mathbf{k}) + f(\mathbf{h}, \mathbf{b}) + f(\mathbf{h}, \mathbf{k}).$$

Let $L(\mathbf{h}, \mathbf{k}) = f(\mathbf{a}, \mathbf{k}) + f(\mathbf{h}, \mathbf{b})$. Then L is a linear function of \mathbf{h} and \mathbf{k} , and $f(\mathbf{a} + \mathbf{h}, \mathbf{b} + \mathbf{k}) - f(\mathbf{a}, bfb) - L(\mathbf{h}, \mathbf{k}) = f(\mathbf{h}, \mathbf{k})$. By part \mathbf{a} , $f(\mathbf{h}, \mathbf{k}) = \epsilon(\mathbf{h}, \mathbf{k}) \|(\mathbf{h}, \mathbf{k})\|$. Thus $L(\mathbf{h}, \mathbf{k}) = Df(\mathbf{a}, \mathbf{b})(\mathbf{h}, \mathbf{k})$.

This brings up a question: What is the gradient $\nabla f(\mathbf{a}, \mathbf{b})$? By definition, it is a vector $\mathbf{v} \in \mathbb{R}^{n+m}$ such that $Df(\mathbf{a}, \mathbf{b})(\mathbf{h}, \mathbf{k}) = \mathbf{v} \cdot (\mathbf{h}, \mathbf{k})$. That is, $f(\mathbf{a}, \mathbf{k}) + f(\mathbf{h}, \mathbf{b}) = \mathbf{v} \cdot (\mathbf{h}, \mathbf{k})$. If $\mathbf{a} = \sum_{i=1}^{n} a_i \mathbf{e}_i$ then $f(\mathbf{a}, \mathbf{k}) = \sum_{i=1}^{n} \sum_{j=1}^{m} a_i k_j f(\mathbf{e}_i, \mathbf{u}_k)$. Let $f_{ij} = f(\mathbf{e}_i, \mathbf{u}_k)$. Then $f(\mathbf{a}, \mathbf{k}) = \sum_{i=1}^{n} \sum_{k=1}^{m} a_i f_{ij} h_k = \mathbf{a}^T \mathbf{F} \cdot \mathbf{h}$, where \mathbf{F}

is the $n \times m$ matrix with entries f_{ij} . Similarly $f(\mathbf{h}, \mathbf{b}) = \mathbf{h} \cdot F\mathbf{b}$. If we put $\mathbf{F}\mathbf{b}$ in the first n positions of a vector in \mathbb{R}^{n+m} , and we put $\mathbf{a}^T\mathbf{F}$ in the last m positions, we have that

$$f(\mathbf{a}, \mathbf{k}) + f(\mathbf{h}, \mathbf{b}) = \left(\mathbf{F} \mathbf{b}, \mathbf{a}^T \mathbf{F} \right) \cdot \left(\mathbf{h}, \mathbf{k} \right).$$
 So $\nabla f(\mathbf{a}, \mathbf{b}) = \left(\mathbf{F} \mathbf{b}, \mathbf{a}^T \mathbf{F} \right).$