MATH 3334 HOMEWORK \#5 DUE OCTOBER 23

PROFESSOR DAVID WAGNER

(1) Find all the critical points of the following functions. Tell whether each critical point is a local maximum, local mininum, or saddle point.
(a) $f(x, y)=3 x^{4}+4 x^{3}-12 x^{2}+y^{2}$.
(b) $f(x, y)=x^{3}-6 x+y^{4}-2 y^{2}$.
(2) Given $f(x, y)=3 x^{2}-y+y^{2}-2 x y$ and the square $D=$ $\{(x, y): 0 \leq x \leq 1,0 \leq y \leq 1\}$. Find all critical points and find the maximum and minimum on D.
(3) If $H(x, y)=x^{2} y^{4}+x^{4} y^{2}+3 x^{2} y^{2}+1$, show that $H(x, y) \geq 0$ for all (x, y). Hint: find the minimum value of H.
(4) Let $f(x, y)=\left(y-x^{2}\right)\left(y-2 x^{2}\right)$. Show that the origin is a critical point for f which is a saddle point, even though on any line through the origin, f has a local minimum at $(0,0)$.

