MATH 3334 HOMEWORK # 1, DUE MONDAY, AUGUST 26

PROFESSOR WAGNER

- (1) Let $\mathbf{x} = (-1, -1, 1, 3)$ and $\mathbf{y} = (2, 1, 0, -2)$. Compute $\|\mathbf{x}\|, \|\mathbf{y}\|$, and the angle between x and y.
- (2) Suppose the vectors \mathbf{x}_j , j = 1, ..., k are mutually orthogonal, that is, $\mathbf{x}_i \cdot \mathbf{x}_j = 0$ for $i \neq j$. Show that $\|\mathbf{x}_1 + \dots + \mathbf{x}_k\|^2 = \|\mathbf{x}_1\|^2 + \dots + \|\mathbf{x}_k\|^2$.
- (3) Show that $|||\mathbf{x}|| ||\mathbf{y}||| \le ||\mathbf{x} \mathbf{y}||$ for every $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$.
- (4) For each of the following subsets S of \mathbb{R}^2 ,
 - (a) Sketch S.
 - (b) Determine whether S is open, closed, or neither.
 - (c) Give set-descriptors for the interior of S, \overline{S} , and the boundary of S.
 - (i) $S = \{(x, y): 0 < x^2 + y^2 \le 9\}.$

 - (ii) $S = \{(x, y): x^2 x < y < 0\}.$ (iii) $S = \{(x, y): x^2 x < y < 0\}.$ (iii) $S = \{(x, y): x \ge 0, y \ge 0, x + y \ge 0\}.$
- (5) Prove that a real number x is a least upper bound for a subset S of \mathbb{R} , if an only if, for every $\epsilon > 0$, there is an upper bound y for S such that $x < y < x + \epsilon$.
- (6) Prove the following statements:
 - A set S is closed if and only if S contains all of its boundary points.
 - A set S is open if and only if S contains none of its boundary points.

Date: August 22, 2019.