MATH 3334 HOMEWORK # 2, DUE WEDNESDAY, SEPTEMBER 4

PROFESSOR WAGNER

- (1) Give an example of a set $S \subset \mathbb{R}$ such that the interior of S is unequal to the interior of the closure of S.
- (2) Show from the definition that the following sets are disconnected:

 - (a) The hyperbola {(x, y) : y² − x² = 1}.
 (b) Any finite set in ℝⁿ with at least two elements.
 - (c) $\{(x, y, z) : xyz > 0\}.$
- (3) Suppose that S and T are connected sets in \mathbb{R}^n , and that $S \cap T$ is not empty. Show that $S \cup T$ is connected.
- (4) Give an example of a connected set in \mathbb{R}^2 for which the interior is disconnected.
- (5) Suppose $||p_{k+1} q|| \le c ||p_k q||$ for all $k \in \mathbb{Z}^+$, with 0 < c < 1. Prove that $p_n \to q$.
- (6) Prove: If $a_n \leq x_n \leq b_n$ and $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = L$, then $\lim_{n\to\infty} x_n = L$. I call this the "two policemen theorem".

Date: August 27, 2019.