Advanced Calculus

Professor David Wagner

${ }^{1}$ Department of Mathematics
University of Houston

September 23

L'Hôpital's Rule II

Theorem

L'Hôpital's Rule is valid if $\left|\lim _{x \rightarrow a} f(x)\right|=\left|\lim _{x \rightarrow a} g(x)\right|=\infty$.
Proof worked on blackboard.

Corollary

For any a>0 we have

$$
\lim _{x \rightarrow \infty} \frac{x^{a}}{e^{x}}=\lim _{x \rightarrow \infty} \frac{\log x}{x^{a}}=\lim _{x \rightarrow 0} \frac{\log x}{x^{-a}}=0
$$

Proof: $\log \left(\frac{x^{a}}{e^{x}}\right)=a \log x-x \rightarrow-\infty$, so $\frac{x^{a}}{e^{x}} \rightarrow 0 . \frac{\log x}{x^{a}} \rightarrow \frac{\infty}{\infty}$, so L'Hôpital's Rule tells us to examine $\lim _{x \rightarrow \infty} \frac{1}{a x^{a}}=0$. The third case is similar.

Local Extreme Values

Theorem

Let f be continuously differentiable on an open set D, and suppose that f has a local maximum (minimum) at $p \in D$. Then $\nabla f(p)=\mathbf{0}$.

Proof.

Let $g_{i}(h)=f\left(p+h e_{i}\right)$. Then g_{i} has a local maximum or minimum at $h=0$. But then, $\frac{\partial f}{\partial x_{i}}(p)=0 i=1, \cdots, n$.

A point p such that $\nabla f(p)=\mathbf{0}$ is called a critical point, or stationary point.

Gradient and Directional Derivatives

Theorem

Let f be differentiable at p. The the largest directional derivative of f at p occurs in the direction of $\nabla f(p)$ and has value $\|\nabla f(p)\|$

Proof.

$$
D_{\mathbf{u}} f(p)=\nabla f(p) \cdot \mathbf{u} \leq\|\nabla f(p)\|\|\mathbf{u}\|=\|\nabla f(p)\|
$$

by the Schwartz Inequality. If $\mathbf{u}=\frac{\nabla f(p)}{\|\nabla f(p)\|}$,
$D_{\mathbf{u}} f(p)=\nabla f(p) \cdot \frac{\nabla f(p)}{\|\nabla f(p)\|}=\|\nabla f(p)\|$.

Example

Example

Suppose a hill has altitude function
$z=h(x, y)=2,000-\frac{x^{2}}{900}-\frac{y^{2}}{1600}, \frac{x^{2}}{900}+\frac{y^{2}}{1600} \leq 2000$. A hiker starts at $(x=900, y=1600)$. She wants to climb the steepest path up the hill. What should her initial direction be?
$\nabla h(x, y)=-\left(\frac{2 x}{900}, \frac{2 y}{1600}\right) ; \nabla h(900,1600)=-(2,2)$. The norm of this vector is $2 \sqrt{2}$. The hiker should start in the direction $-\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$. The slope $\left(\frac{\text { rise }}{\text { run }}\right)$ of her initial ascent will be $2 \sqrt{2}$ (pretty steep!).

Differentials

Definition

Suppose f is differentiable at a, so that

$$
f(\mathbf{a}+\mathbf{h})-f(\mathbf{a})=\nabla f(\mathbf{a}) \cdot \mathbf{h}+\epsilon(\mathbf{h})\|\mathbf{h}\| .
$$

Then the linear map $\mathbf{h} \rightarrow \nabla f(\mathbf{a}) \cdot \mathbf{h}$ is called the differential of f at \mathbf{a} and is denoted by $d f_{\mathbf{a}}(\mathbf{h})$. This is the same as $\operatorname{Df}(\mathbf{a})(\mathbf{h})$

Example

Let $f(x, y)=x$. Then f is differentiable on $\mathbb{R}^{2}, \nabla f=(1,0)$, and $d f_{(3,4)}(h, k)=h$. Actually $d f=d x$.

Example

Example

Let $g(x, y)=x^{3} y$. Then g is differentiable on \mathbb{R}^{2},
$\nabla g=\left(3 x^{2} y, x^{3}\right)$,
$d g_{(x, y)}(h, k)=3 x^{2} y h+x^{3} k=3 x^{2} y d x(h, k)+x^{3} d y(h, k)$. So we may write:

$$
d g_{(x, y)}=3 x^{2} y d x+x^{3} d y
$$

This illustrates how differentials are frequently expressed in terms of differentials of coordinates.

$$
d f\left(x_{1}, \cdots, x_{n}\right)=\frac{\partial f}{\partial x_{1}}\left(x_{1}, \cdots, x_{n}\right) d x_{1}+\cdots+\frac{\partial f}{\partial x_{n}}\left(x_{1}, \cdots, x_{n}\right) d x_{n} .
$$

More examples

One can look at an equation

$$
d z=d f(x, y)=\frac{\partial f}{\partial x}(x, y) d x+\frac{\partial f}{\partial y}(x, y) d y
$$

as the equation of the tangent plane to the graph of f, with coordinates $(d x, d y, d z)$ centered at $(x, y, f(x, y))$. This equation is equivalent to

$$
z-z_{0}=\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)
$$

Rules about partial derivatives of sums, products, and quotients translate into similar rules for differentials:

$$
d(f+g)=d f+d g, \quad d(f g)=f d g+g d f, \quad d\left(\frac{f}{g}\right)=\frac{g d f-f d g}{g^{2}} .
$$

Differentials are handy for quick approximations to small changes in a function.

Example

A box is made with dimensions 1 foot $\times 2$ feet $\times 3$ feet. The measurements are accurate within 0.1 feet. How accurate is the volume calculated from these measurements?

Example

Example

The calculated volume is 6 cubic feet, $V(x, y, z)=x y z$, $d V_{(x, y, z)}=y z d x+x z d y+x y d z$ or $d V=6 d x+3 d y+2 d z$. If $d x=d y=d z=0.1, d V=1.1$ feet.
The actual change in V from $V(1,2,3)$ to $V(1.1,2.1,3.1)$ is $7.161-6=1.161$. Our approximation is pretty close.

Theorem (Chain Rule version I)

Suppose $g:(a-\epsilon, a+\epsilon) \rightarrow \mathbb{R}^{n}, g(a)=\mathbf{b}$, and g is differentiable at a. Suppose f maps a neighborhood of \mathbf{b} to \mathbb{R} and f is continuously differentiable at \mathbf{b}. Let $\phi(t)=f(g(t))$. Then ϕ is differentiable at a and $\phi^{\prime}(t)=\nabla f(\mathbf{b}) \cdot g^{\prime}(a)$.

Remark

One might write $\phi^{\prime}(a)=\frac{\partial f}{\partial x_{1}} \frac{d x_{1}}{d t}(a)+\cdots+\frac{\partial f}{\partial x_{n}} \frac{d x_{n}}{d t}(a)$, or if $w=f(\mathbf{x}), \frac{\partial w}{\partial x_{1}} \frac{d x_{1}}{d t}+\cdots+\frac{\partial w}{\partial x_{n}} \frac{d x_{n}}{d t}$

Proof

Proof: For simplicity, let $n=2$. Fix $\mathbf{a}=(x, y) \in U$, and let $\epsilon>0$.
For $\mathbf{h}=\left(h_{1}, h_{2}\right)$ near $\mathbf{0}$,
$f(\mathbf{a}+\mathbf{h})-f(\mathbf{x})=f\left(x+h_{1}, y+h_{2}\right)-f\left(x, y+h_{2}\right)+f\left(x, y+h_{2}\right)-f(x, y)$.
By the MVT there are numbers c_{1} between 0 and h_{1}, and c_{2} between 0 and h_{2} such that:

$$
\begin{aligned}
f\left(x+h_{1}, y+h_{2}\right)-f\left(x, y+h_{2}\right) & =\frac{\partial f}{\partial x}\left(x+c_{1}, y+h_{2}\right) h_{1} \\
f\left(x, y+h_{2}\right)-f(x, y) & =\frac{\partial f}{\partial y}\left(x, y+c_{2}\right) h_{2} .
\end{aligned}
$$

Proof continued

Then

$$
\begin{aligned}
f(\mathbf{a}+\mathbf{h})-f(\mathbf{a})-\nabla f \cdot \mathbf{h} & =\left(\frac{\partial f}{\partial x}\left(x+c_{1}, y+h_{2}\right)-\frac{\partial f}{\partial x}(\mathbf{a})\right) h_{1} \\
& +\left(\frac{\partial f}{\partial x}\left(x, y+c_{2}\right)-\frac{\partial f}{\partial y}(\mathbf{a})\right) h_{2} .
\end{aligned}
$$

Since $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ are continuous on U, and c_{i} is between 0 and h_{i}, the factors of h_{1} and h_{2} tend to 0 as $\mathbf{h} \rightarrow 0$. So the right hand side is $\epsilon(\mathbf{h})\|\mathbf{h}\|$.

Directional Derivatives

e

Definition

Let D be an open subset of \mathbb{R}^{n}, and let $f: D \rightarrow \mathbb{R}$. Let \mathbf{u} be a unit vector in \mathbb{R}^{n}. We say that f has a directional derivative at $\mathbf{x} \in D$ in the direction \mathbf{u}, if

$$
\lim _{h \rightarrow 0} \frac{f(\mathbf{x}+h \mathbf{u})-f(\mathbf{x})}{h} \text { exists. }
$$

We denote this limit by $\left(D_{\mathbf{u}} f\right)(\mathbf{x})$.
The partial derivatives of f are examples of directional derivatives (when the coordinate system is orthonormal). Note that the existence or value of a directional derivative does not depend on a choice of coordinates.

Directional Derivatives

Theorem

If f is differentiable at \mathbf{x}, then for each unit vector $\mathbf{u},\left(D_{\mathbf{u}} f\right)(\mathbf{x})$ exists and equals $\nabla f(\mathbf{x}) \cdot \mathbf{u}$.

Proof.

$$
\frac{f(\mathbf{x}+h \mathbf{u})-f(\mathbf{x})}{h}=\nabla f(\mathbf{x}) \cdot \mathbf{u}+\epsilon(h \mathbf{u}) .
$$

In the limit as $h \rightarrow 0$, we obtain the stated result.

Tangent plane

Let f be differentiable at \mathbf{x}. When $n=2$ and \mathbf{x} fixed, the graph of $z=f(\mathbf{x})+\nabla f(\mathbf{x}) \cdot \mathbf{h}$ is a plane in \mathbb{R}^{3} tangent to the graph of $z=f(\mathbf{x}+\mathbf{h})$ at $(\mathbf{h}=0, z=f(\mathbf{x}))$. If \mathbf{u} is a unit vector in \mathbb{R}^{2}, the line with direction vector $\left(\mathbf{u},\left(D_{\mathbf{u}} f\right)(\mathbf{x})\right)$ through $(\mathbf{h}=\mathbf{0}, z=f(\mathbf{x}))$ is in the tangent plane because $\left(D_{\mathbf{u}} f\right)(\mathbf{x})=\nabla f \cdot \mathbf{u}$.

Mean Value Theorem

Theorem

Suppose f is continuous on $[a, b]$ and differentiable on (a, b). Then there is at least one $c \in(a, b)$ such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$.

Proof.

The line through $(a, f(a))$ and $(b, f(b))$ has slope $\frac{f(b)-f(a)}{b-a}$. Let

$$
g(x)=f(x)-\frac{f(b)-f(a)}{b-a}(x-a) .
$$

Then g is continuous on $[a, b]$ and differentiable on (a, b). $g(b)=g(a)$, so Rolle's Theorem states that there must be $c \in(a, b)$ such that $g^{\prime}(c)=f^{\prime}(c)-\frac{f(b)-f(a)}{b-a}=0$.

Applications of MVT

Definition

We say that a function f is increasing (respectively strictly increasing) on an interval I, if $f(a) \leq f(b)$ (resp. $f(a)<f(b)$ whenever $a, b \in I$ and $a<b$. We define decreasing and strictly decreasing functions similarly.

Theorem (Interpretation of the derivative)

Suppose f is differentiable on the open interval I.
a If $\left|f^{\prime}(x)\right| \leq C$ for all $x \in I$, then $|f(b)-f(a)| \leq C|b-a|$ for all $a, b \in I$.
b If $f^{\prime}(x)=0$ for all $x \in I$, then f is constant on I.
c If $f^{\prime}(x) \geq 0$ (resp. $f^{\prime}(x)>0, f^{\prime}(x) \leq 0$, or $f^{\prime}(x)<0$) for all $x \in I$, then f is increasing (resp. strictly increasing, decreasing, strictly decreasing) on I.

Proof

Proof.

Let $a, b \in I$. Since f is differentiable on I and $[a, b] \subset I, f$ is continuous on I. Then the MVT gives us a point $c \in(a, b)$ such that $f(b)-f(a)=f^{\prime}(c)(b-a)$. For $a,\left|f^{\prime}(c)\right| \leq C$, so $|f(b)-f(a)| \leq C|b-a|$. Parts b, c are proved similarly.

Remark

If all we know about f is that f is differentiable at a and $f^{\prime}(a)>0$, it does not follow that f is increasing in some neighborhood of a.

Generalized MVT

Theorem (Generalized MVT)

Suppose that f and g are continuous on $[a, b]$, differentiable on (a, b), and that $g^{\prime}(x) \neq 0$ for all $x \in(a, b)$. Then there is $c \in(a, b)$ such that

$$
\frac{f^{\prime}(c)}{g^{\prime}(c)}=\frac{f(b)-f(a)}{g(b)-g(a)}
$$

Proof of Generalized MVT

Proof

- Let $h(x)=$ $(f(b)-f(a))(g(x)-g(a))-(g(b)-g(a))(f(x)-f(a))$.
- Then h is continuous on $[a, b]$, differentiable on (a, b), and $h(a)=h(b)=0$.
- By Rolle's Theorem there is $c \in(a, b)$ such that $h^{\prime}(c)=(f(b)-f(a)) g^{\prime}(c)-(g(b)-g(a)) f^{\prime}(c)=0$.
- Since g^{\prime} is never 0 on $(a, b), g^{\prime}(c) \neq 0$ and $g(b)-g(a) \neq 0$ (by MVT).
- Then dividing by $g^{\prime}(c)(g(b)-g(a))$ gives the result.

Remark

If we use f and g to parameterize a curve: $y=f(t), x=g(t)$, $t \in[a, b]$, then by the chain rule, $\frac{d y}{d x}=\frac{f^{\prime}(t)}{g^{\prime}(t)}$. In this case the Generalized MVT says that there is a tangent line to the parameterized curve, that is parallel to the secant line through $(a, f(a))$ and $(b, f(b))$.

Application of Generalized MVT

Theorem (L'Hôpital's Rule I)

Suppose f and g are differentiable functions on (a, b) and

$$
\lim _{x \rightarrow a+} f(x)=\lim _{x \rightarrow a+} g(x)=0
$$

If g^{\prime} never vanishes on (a, b) and

$$
\lim _{x \rightarrow a+} \frac{f^{\prime}(x)}{g^{\prime}(x)}=L
$$

then g never vanishes on (a, b) and

$$
\lim _{x \rightarrow a+} \frac{f(x)}{g(x)}=L
$$

