Advanced Calculus

Professor David Wagner

¹Department of Mathematics University of Houston

September 23

Clean-up

L'Hôpital's Rule II

Theorem

L'Hôpital's Rule is valid if $|\lim_{x\to a} f(x)| = |\lim_{x\to a} g(x)| = \infty$.

Proof worked on blackboard.

Corollary

For any a > 0 we have

$$\lim_{x \to \infty} \frac{x^a}{e^x} = \lim_{x \to \infty} \frac{\log x}{x^a} = \lim_{x \to 0} \frac{\log x}{x^{-a}} = 0.$$

Proof: $\log\left(\frac{x^a}{e^x}\right) = a \log x - x \to -\infty$, so $\frac{x^a}{e^x} \to 0$. $\frac{\log x}{x^a} \to \frac{\infty}{\infty}$, so L'Hôpital's Rule tells us to examine $\lim_{x\to\infty} \frac{1}{ax^a} = 0$. The third case is similar.

□→ < □→</p>

Local Extreme Values

Theorem

Let f be continuously differentiable on an open set D, and suppose that f has a local maximum (minimum) at $p \in D$. Then $\nabla f(p) = \mathbf{0}$.

Proof.

Let $g_i(h) = f(p + he_i)$. Then g_i has a local maximum or minimum at h = 0. But then, $\frac{\partial f}{\partial x_i}(p) = 0$ $i = 1, \dots, n$.

A point *p* such that $\nabla f(p) = \mathbf{0}$ is called a *critical point*, or *stationary point*.

Gradient and Directional Derivatives

Theorem

Let f be differentiable at p. The the largest directional derivative of f at p occurs in the direction of $\nabla f(p)$ and has value $\|\nabla f(p)\|$

Proof.

by t

$$D_{\mathbf{u}}f(p) = \nabla f(p) \cdot \mathbf{u} \le \|\nabla f(p)\| \|\mathbf{u}\| = \|\nabla f(p)\|,$$

by the Schwartz Inequality. If $\mathbf{u} = \frac{\nabla f(p)}{\|\nabla f(p)\|},$
$$D_{\mathbf{u}}f(p) = \nabla f(p) \cdot \frac{\nabla f(p)}{\|\nabla f(p)\|} = \|\nabla f(p)\|.$$

Example

Suppose a hill has altitude function $z = h(x, y) = 2,000 - \frac{x^2}{900} - \frac{y^2}{1600}, \frac{x^2}{900} + \frac{y^2}{1600} \le 2000.$ A hiker starts at (x = 900, y = 1600). She wants to climb the steepest path up the hill. What should her initial direction be?

 $abla h(x,y) = -\left(\frac{2x}{900}, \frac{2y}{1600}\right); \ \nabla h(900, 1600) = -(2,2).$ The norm of this vector is $2\sqrt{2}$. The hiker should start in the direction $-\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$. The slope $\left(\frac{\text{rise}}{\text{run}}\right)$ of her initial ascent will be $2\sqrt{2}$ (pretty steep!).

Definition

Suppose f is differentiable at \mathbf{a} , so that

$$f(\mathbf{a} + \mathbf{h}) - f(\mathbf{a}) =
abla f(\mathbf{a}) \cdot \mathbf{h} + \epsilon(\mathbf{h}) \|\mathbf{h}\|$$
.

Then the linear map $\mathbf{h} \to \nabla f(\mathbf{a}) \cdot \mathbf{h}$ is called the *differential* of f at \mathbf{a} and is denoted by $df_{\mathbf{a}}(\mathbf{h})$. This is the same as $Df(\mathbf{a})(\mathbf{h})$

Example

Let f(x, y) = x. Then f is differentiable on \mathbb{R}^2 , $\nabla f = (1, 0)$, and $df_{(3,4)}(h, k) = h$. Actually df = dx.

Example

Example

Let
$$g(x, y) = x^3y$$
. Then g is differentiable on \mathbb{R}^2 ,
 $\nabla g = (3x^2y, x^3)$,
 $dg_{(x,y)}(h, k) = 3x^2yh + x^3k = 3x^2ydx(h, k) + x^3dy(h, k)$. So we
may write:

$$dg_{(x,y)} = 3x^2 y dx + x^3 dy.$$

This illustrates how differentials are frequently expressed in terms of differentials of coordinates.

$$df(x_1,\cdots,x_n)=\frac{\partial f}{\partial x_1}(x_1,\cdots,x_n)\,dx_1+\cdots+\frac{\partial f}{\partial x_n}(x_1,\cdots,x_n)\,dx_n.$$

One can look at an equation

$$dz = df(x, y) = \frac{\partial f}{\partial x}(x, y)dx + \frac{\partial f}{\partial y}(x, y)dy$$

as the equation of the tangent plane to the graph of f, with coordinates (dx, dy, dz) centered at (x, y, f(x, y)). This equation is equivalent to

$$z-z_0=\frac{\partial f}{\partial x}(x_0,y_0)(x-x_0)+\frac{\partial f}{\partial y}(x_0,y_0)(y-y_0).$$

Rules about partial derivatives of sums, products, and quotients translate into similar rules for differentials:

$$d(f+g) = df + dg,$$
 $d(fg) = fdg + gdf,$ $d\left(\frac{f}{g}\right) = \frac{gdf - fdg}{g^2}$

Differentials are handy for quick approximations to small changes in a function.

Example

A box is made with dimensions 1 foot \times 2 feet \times 3 feet. The measurements are accurate within 0.1 feet. How accurate is the volume calculated from these measurements?

Example

The calculated volume is 6 cubic feet, V(x, y, z) = xyz, $dV_{(x,y,z)} = yzdx + xzdy + xydz$ or dV = 6dx + 3dy + 2dz. If dx = dy = dz = 0.1, dV = 1.1 feet. The actual change in V from V(1, 2, 3) to V(1.1, 2.1, 3.1) is 7.161 - 6 = 1.161. Our approximation is pretty close.

Theorem (Chain Rule version I)

Suppose $g : (a - \epsilon, a + \epsilon) \to \mathbb{R}^n$, $g(a) = \mathbf{b}$, and g is differentiable at a. Suppose f maps a neighborhood of \mathbf{b} to \mathbb{R} and f is continuously differentiable at \mathbf{b} . Let $\phi(t) = f(g(t))$. Then ϕ is differentiable at a and $\phi'(t) = \nabla f(\mathbf{b}) \cdot g'(a)$.

Remark

One might write
$$\phi'(a) = \frac{\partial f}{\partial x_1} \frac{dx_1}{dt}(a) + \dots + \frac{\partial f}{\partial x_n} \frac{dx_n}{dt}(a)$$
, or if $w = f(\mathbf{x}), \ \frac{\partial w}{\partial x_1} \frac{dx_1}{dt} + \dots + \frac{\partial w}{\partial x_n} \frac{dx_n}{dt}$

Proof: For simplicity, let n = 2. Fix $\mathbf{a} = (x, y) \in U$, and let $\epsilon > 0$. For $\mathbf{h} = (h_1, h_2)$ near $\mathbf{0}$,

$$f(\mathbf{a}+\mathbf{h})-f(\mathbf{x}) = f(x+h_1, y+h_2)-f(x, y+h_2)+f(x, y+h_2)-f(x, y).$$

By the MVT there are numbers c_1 between 0 and h_1 , and c_2 between 0 and h_2 such that:

$$f(x+h_1, y+h_2) - f(x, y+h_2) = \frac{\partial f}{\partial x} (x+c_1, y+h_2) h_1$$
$$f(x, y+h_2) - f(x, y) = \frac{\partial f}{\partial y} (x, y+c_2) h_2.$$

Proof continued

Then

$$f(\mathbf{a} + \mathbf{h}) - f(\mathbf{a}) - \nabla f \cdot \mathbf{h} = \left(\frac{\partial f}{\partial x} \left(x + c_1, y + h_2\right) - \frac{\partial f}{\partial x}(\mathbf{a})\right) h_1 \\ + \left(\frac{\partial f}{\partial x} \left(x, y + c_2\right) - \frac{\partial f}{\partial y}(\mathbf{a})\right) h_2.$$

Since $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ are continuous on U, and c_i is between 0 and h_i , the factors of h_1 and h_2 tend to 0 as $\mathbf{h} \to 0$. So the right hand side is $\epsilon(\mathbf{h}) \|\mathbf{h}\|$.

Directional Derivatives

е

Definition

Let *D* be an open subset of \mathbb{R}^n , and let $f : D \to \mathbb{R}$. Let **u** be a unit vector in \mathbb{R}^n . We say that *f* has a *directional derivative* at $\mathbf{x} \in D$ in the direction **u**, if

$$\lim_{h\to 0}\frac{f(\mathbf{x}+h\mathbf{u})-f(\mathbf{x})}{h}$$
 exists.

We denote this limit by $(D_{\mathbf{u}}f)(\mathbf{x})$.

The partial derivatives of f are examples of directional derivatives (when the coordinate system is orthonormal). Note that the existence or value of a directional derivative does not depend on a choice of coordinates.

Directional Derivatives

Theorem

If f is differentiable at x, then for each unit vector u, $(D_u f)(x)$ exists and equals $\nabla f(x) \cdot u$.

Proof.

$$\frac{f(\mathbf{x} + h\mathbf{u}) - f(\mathbf{x})}{h} = \nabla f(\mathbf{x}) \cdot \mathbf{u} + \epsilon(h\mathbf{u}).$$

In the limit as $h \rightarrow 0$, we obtain the stated result.

Let f be differentiable at x. When n = 2 and x fixed, the graph of $z = f(\mathbf{x}) + \nabla f(\mathbf{x}) \cdot \mathbf{h}$ is a plane in \mathbb{R}^3 tangent to the graph of $z = f(\mathbf{x} + \mathbf{h})$ at $(\mathbf{h} = 0, z = f(\mathbf{x}))$. If u is a unit vector in \mathbb{R}^2 , the line with direction vector $(\mathbf{u}, (D_{\mathbf{u}}f)(\mathbf{x}))$ through $(\mathbf{h} = \mathbf{0}, z = f(\mathbf{x}))$ is in the tangent plane because $(D_{\mathbf{u}}f)(\mathbf{x}) = \nabla f \cdot \mathbf{u}$.

Mean Value Theorem

Theorem

Suppose f is continuous on [a, b] and differentiable on (a, b). Then there is at least one $c \in (a, b)$ such that $f'(c) = \frac{f(b)-f(a)}{b-a}$.

Proof.

The line through (a, f(a)) and (b, f(b)) has slope $\frac{f(b)-f(a)}{b-a}$. Let

$$g(x) = f(x) - \frac{f(b) - f(a)}{b - a}(x - a).$$

Then g is continuous on [a, b] and differentiable on (a, b). g(b) = g(a), so Rolle's Theorem states that there must be $c \in (a, b)$ such that $g'(c) = f'(c) - \frac{f(b) - f(a)}{b-a} = 0$.

Applications of MVT

Definition

We say that a function f is *increasing* (respectively *strictly increasing*) on an interval I, if $f(a) \le f(b)$ (resp. f(a) < f(b) whenever $a, b \in I$ and a < b. We define *decreasing* and *strictly decreasing* functions similarly.

Theorem (Interpretation of the derivative)

Suppose f is differentiable on the open interval I.

- a If $|f'(x)| \leq C$ for all $x \in I$, then $|f(b) f(a)| \leq C |b a|$ for all $a, b \in I$.
- b If f'(x) = 0 for all $x \in I$, then f is constant on I.
- c If $f'(x) \ge 0$ (resp. f'(x) > 0, $f'(x) \le 0$, or f'(x) < 0) for all $x \in I$, then f is increasing (resp. strictly increasing, decreasing, strictly decreasing) on I.

Proof.

Let $a, b \in I$. Since f is differentiable on I and $[a, b] \subset I$, f is continuous on I. Then the MVT gives us a point $c \in (a, b)$ such that f(b) - f(a) = f'(c)(b - a). For a, $|f'(c)| \leq C$, so $|f(b) - f(a)| \leq C |b - a|$. Parts b, c are proved similarly.

Remark

If all we know about f is that f is differentiable at a and f'(a) > 0, it does *not* follow that f is increasing in some neighborhood of a.

Generalized MVT

Theorem (Generalized MVT)

Suppose that f and g are continuous on [a, b], differentiable on (a, b), and that $g'(x) \neq 0$ for all $x \in (a, b)$. Then there is $c \in (a, b)$ such that

$$\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}.$$

Proof of Generalized MVT

Proof

- Let h(x) = (f(b) f(a))(g(x) g(a)) (g(b) g(a))(f(x) f(a)).
- Then h is continuous on [a, b], differentiable on (a, b), and h(a) = h(b) = 0.
- By Rolle's Theorem there is $c \in (a, b)$ such that h'(c) = (f(b) f(a))g'(c) (g(b) g(a))f'(c) = 0.
- Since g' is never 0 on (a, b), $g'(c) \neq 0$ and $g(b) g(a) \neq 0$ (by MVT).
- Then dividing by g'(c)(g(b) g(a)) gives the result.

Remark

If we use f and g to parameterize a curve: y = f(t), x = g(t), $t \in [a, b]$, then by the chain rule, $\frac{dy}{dx} = \frac{f'(t)}{g'(t)}$. In this case the Generalized MVT says that there is a tangent line to the parameterized curve, that is parallel to the secant line through (a, f(a)) and (b, f(b)).

Clean-up

Application of Generalized MVT

Theorem (L'Hôpital's Rule I)

Suppose f and g are differentiable functions on (a, b) and

$$\lim_{x\to a+} f(x) = \lim_{x\to a+} g(x) = 0.$$

If g' never vanishes on (a, b) and

$$\lim_{x\to a+}\frac{f'(x)}{g'(x)}=L,$$

then g never vanishes on (a, b) and

$$\lim_{x\to a+}\frac{f(x)}{g(x)}=L.$$

▲□ ► < □ ► </p>