Advanced Calculus

Professor David Wagner

¹Department of Mathematics University of Houston

October 2

A 10

Multi-D Mean Value Theorem

Theorem (Mean Value Theorem)

Let U be an open set in \mathbb{R}^n , and suppose that the line segment $[\mathbf{a}, \mathbf{b}] \subset U$. Let f be differentiable on U. Then there is a point $\mathbf{c} \in (\mathbf{a}, \mathbf{b})$ such that

$$f(\mathbf{b}) - f(\mathbf{a}) = \nabla f(\mathbf{c}) \cdot (\mathbf{b} - \mathbf{a}).$$

Proof

- Let $g(t) = (1 t)\mathbf{a} + t\mathbf{b}$, $0 \le t \le 1$, so that g parameterizes $[\mathbf{a}, \mathbf{b}]$.
- Let φ(t) = f(g(t)). We need to show that φ is differentiable on (0, 1).

Let
$$t \in (0, 1)$$
.

$$\phi(t+h) - \phi(t) = f (\mathbf{a} + (t+h) (\mathbf{b} - \mathbf{a})) - f (\mathbf{a} + t (\mathbf{b} - \mathbf{a}))$$

$$= f (\mathbf{a} + t (\mathbf{b} - \mathbf{a}) + h (\mathbf{b} - \mathbf{a})) - f (\mathbf{a} + t (\mathbf{b} - \mathbf{a}))$$

$$= \nabla f (\mathbf{a} + t (\mathbf{b} - \mathbf{a})) \cdot h (\mathbf{b} - \mathbf{a})$$

$$+ \epsilon (h (\mathbf{b} - \mathbf{a})) \|h (\mathbf{b} - \mathbf{a})\|.$$

The term $\epsilon (h (\mathbf{b} - \mathbf{a})) ||h(\mathbf{b} - \mathbf{a})|| = \epsilon (h (\mathbf{b} - \mathbf{a})) |h| ||\mathbf{b} - \mathbf{a}||$ is clearly of the form $\epsilon(h) |h|$. So ϕ is differentiable at any $t \in (0, 1)$, and $\phi'(t) = \nabla f (\mathbf{a} + t (\mathbf{b} - \mathbf{a})) \cdot (\mathbf{b} - \mathbf{a})$.

/₽ ► < ∃ ►

End of MVT Proof

Now we apply the 1 - D MVT to ϕ : There is $c \in (0, 1)$ such that:

$$\phi(1) - \phi(0) = \phi'(c), \text{ or } f(\mathbf{b}) - f(\mathbf{a}) = \nabla f(\mathbf{a} + c(\mathbf{b} - \mathbf{a})) \cdot (\mathbf{b} - \mathbf{a}).$$

Thus, with $\mathbf{c} = \mathbf{a} + c (\mathbf{b} - \mathbf{a})$, the MVT is proved.

Remark

The MVT is *not* valid for vector valued functions, because a different \mathbf{c} is needed for each vector component.

Theorem (Chain Rule version I)

Suppose $g : (a - \epsilon, a + \epsilon) \to \mathbb{R}^n$, $g(a) = \mathbf{b}$, and g is differentiable at a. Suppose f maps a neighborhood of \mathbf{b} to \mathbb{R} and f is continuously differentiable at \mathbf{b} . Let $\phi(t) = f(g(t))$. Then ϕ is differentiable at a and $\phi'(t) = \nabla f(\mathbf{b}) \cdot g'(a)$.

Remark

One might write
$$\phi'(a) = \frac{\partial f}{\partial x_1} \frac{dx_1}{dt}(a) + \dots + \frac{\partial f}{\partial x_n} \frac{dx_n}{dt}(a)$$
, or if $w = f(\mathbf{x}), \ \frac{\partial w}{\partial x_1} \frac{dx_1}{dt} + \dots + \frac{\partial w}{\partial x_n} \frac{dx_n}{dt}$

Proof:

$$\phi(\mathbf{a}+\mathbf{u})-\phi(\mathbf{a})=f((g(\mathbf{a}+\mathbf{u}))-f(g(\mathbf{a})).$$

By the MVT there is $\mathbf{c} \in [f(g(a)), f(g(a+u))]$ such that:

$$egin{aligned} f(g(a+u)) - f(g(a)) &=
abla f(\mathbf{c}) \cdot (g(a+u) - g(a)) \ &=
abla f(\mathbf{c}) \cdot (g'(a)u + \epsilon(u)u) \ &=
abla f(\mathbf{c}) \cdot g'(a)u + \epsilon_2(u)u. \end{aligned}$$

Since f is C^1 at $g'(a) = \mathbf{b}$, and $\mathbf{c} \to \mathbf{b}$ as $u \to 0$, $\nabla f(\mathbf{c}) \to \nabla f(\mathbf{b})$.