Advanced Calculus

Professor David Wagner

${ }^{1}$ Department of Mathematics
University of Houston

October 2

Multi-D Mean Value Theorem

Theorem (Mean Value Theorem)

Let U be an open set in \mathbb{R}^{n}, and suppose that the line segment $[\mathbf{a}, \mathbf{b}] \subset U$. Let f be differentiable on U. Then there is a point $\mathbf{c} \in(\mathbf{a}, \mathbf{b})$ such that

$$
f(\mathbf{b})-f(\mathbf{a})=\nabla f(\mathbf{c}) \cdot(\mathbf{b}-\mathbf{a})
$$

Proof

- Let $g(t)=(1-t) \mathbf{a}+t \mathbf{b}, 0 \leq t \leq 1$, so that g parameterizes [a, b].
- Let $\phi(t)=f(g(t))$. We need to show that ϕ is differentiable on $(0,1)$.

MVT Continued!

Let $t \in(0,1)$.

$$
\begin{aligned}
& \phi(t+h)-\phi(t)= f(\mathbf{a}+(t+h)(\mathbf{b}-\mathbf{a}))-f(\mathbf{a}+t(\mathbf{b}-\mathbf{a})) \\
&=f(\mathbf{a}+t(\mathbf{b}-\mathbf{a})+h(\mathbf{b}-\mathbf{a}))-f(\mathbf{a}+t(\mathbf{b}-\mathbf{a})) \\
&=\nabla f(\mathbf{a}+t(\mathbf{b}-\mathbf{a})) \cdot h(\mathbf{b}-\mathbf{a}) \\
& \quad+\epsilon(h(\mathbf{b}-\mathbf{a}))\|h(\mathbf{b}-\mathbf{a})\| .
\end{aligned}
$$

The term $\epsilon(h(\mathbf{b}-\mathbf{a}))\|h(\mathbf{b}-\mathbf{a})\|=\epsilon(h(\mathbf{b}-\mathbf{a}))|h|\|\mathbf{b}-\mathbf{a}\|$ is clearly of the form $\epsilon(h)|h|$. So ϕ is differentiable at any $t \in(0,1)$, and $\phi^{\prime}(t)=\nabla f(\mathbf{a}+t(\mathbf{b}-\mathbf{a})) \cdot(\mathbf{b}-\mathbf{a})$.

End of MVT Proof

Now we apply the $1-D$ MVT to ϕ : There is $c \in(0,1)$ such that: $\phi(1)-\phi(0)=\phi^{\prime}(c)$, or $f(\mathbf{b})-f(\mathbf{a})=\nabla f(\mathbf{a}+c(\mathbf{b}-\mathbf{a})) \cdot(\mathbf{b}-\mathbf{a})$.

Thus, with $\mathbf{c}=\mathbf{a}+c(\mathbf{b}-\mathbf{a})$, the MVT is proved.

Remark

The MVT is not valid for vector valued functions, because a different \mathbf{c} is needed for each vector component.

Theorem (Chain Rule version I)

Suppose $g:(a-\epsilon, a+\epsilon) \rightarrow \mathbb{R}^{n}, g(a)=\mathbf{b}$, and g is differentiable at a. Suppose f maps a neighborhood of \mathbf{b} to \mathbb{R} and f is continuously differentiable at \mathbf{b}. Let $\phi(t)=f(g(t))$. Then ϕ is differentiable at a and $\phi^{\prime}(t)=\nabla f(\mathbf{b}) \cdot g^{\prime}(a)$.

Remark

One might write $\phi^{\prime}(a)=\frac{\partial f}{\partial x_{1}} \frac{d x_{1}}{d t}(a)+\cdots+\frac{\partial f}{\partial x_{n}} \frac{d x_{n}}{d t}(a)$, or if $w=f(\mathbf{x}), \frac{\partial w}{\partial x_{1}} \frac{d x_{1}}{d t}+\cdots+\frac{\partial w}{\partial x_{n}} \frac{d x_{n}}{d t}$

Proof

Proof:

$$
\phi(a+u)-\phi(a)=f((g(a+u))-f(g(a)) .
$$

By the MVT there is $\mathbf{c} \in[f(g(a)), f(g(a+u))]$ such that:

$$
\begin{aligned}
f(g(a+u))-f(g(a)) & =\nabla f(\mathbf{c}) \cdot(g(a+u)-g(a)) \\
& =\nabla f(\mathbf{c}) \cdot\left(g^{\prime}(a) u+\epsilon(u) u\right) \\
& =\nabla f(\mathbf{c}) \cdot g^{\prime}(a) u+\epsilon_{2}(u) u .
\end{aligned}
$$

Since f is C^{1} at $g^{\prime}(a)=\mathbf{b}$, and $\mathbf{c} \rightarrow \mathbf{b}$ as $u \rightarrow 0$, $\nabla f(\mathbf{c}) \rightarrow \nabla f(\mathbf{b})$.

