The real numbers  $\mathbb{R}$ The vector space  $\mathbb{R}^n$ 

#### Advanced Calculus

#### Professor David Wagner

<sup>1</sup>Department of Mathematics University of Houston

August 19

A D

#### Who am I, contact info

Professor David Wagner Office 615 PGH, Phone 713-743-3460 Course web page https://www.math.uh.edu/~wagner/3334/ math\_3334\_fall\_2019.html Start with https://www.math.uh.edu/~wagner, click on link for Teaching, then click on link for 3334. The set of real numbers  $\ensuremath{\mathbb{R}}$  is a complete ordered field. It is the only one.

Properties:

- Addition and multiplication are associative and commutative.
- There is an additive identity, "1", and a multiplicative identity, "0".
- So Every real number x has an additive inverse, which is a real number -x, such that x + (-x) = 0.
- Severy non-zero real number x has a multiplicative inverse, which is a real number  $\frac{1}{x}$ , such that  $x * (\frac{1}{x}) = 1$ .

Properties 1 - 4 characterize  $\mathbb{R}$  as a field. Other fields include  $\mathbb{Q}$ ,  $\mathbb{C}$ ,  $\mathbb{Z}_p$ —the rational numbers, the complex numbers, and the integers mod p, when p is a prime number.

#### Order properties of $\mathbb R$

For every pair of real numbers x and y, exactly one of the following is true:

$$x = y, x > y, x < y.$$

$$\textbf{ if } x < y, \text{ then } x + z < y + z \text{ for any } z \in \mathbb{R}.$$

• If 
$$x < y$$
 and  $z > 0$ , then  $xz < yz$ .

Have we left something out? There are two ordered fields,  $\mathbb{Q}$  and  $\mathbb{R}$ .

Let's try to prove this:

If x < y and z < 0, then xz > yz.

Multiplication of an inequality by a negative number reverses the inequality.



#### • If x < y and z < 0,

- Then 0 − *z* > 0,
- Why?
- (If z < 0, then 0 = -z + z < -z + 0 = 0 z.)
- so that (0 z)x < (0 z)y,
- and so -xz < -yz.
- Now add xz + yz to both sides to get:
- -xz + xz + yz < -yz + xz + yz, or
- yz < xz.

▲ □ ▶ ▲ □ ▶ ▲

∃ >



- If x < y and z < 0,
- Then 0 z > 0,
- Why?
- (If z < 0, then 0 = -z + z < -z + 0 = 0 z.)
- so that (0 z)x < (0 z)y,
- and so -xz < -yz.
- Now add xz + yz to both sides to get:
- -xz + xz + yz < -yz + xz + yz, or
- yz < xz.

▲ □ ▶ ▲ □ ▶ ▲

∃ >



- If x < y and z < 0,
- Then 0 − z > 0,
- Why?
- (If z < 0, then 0 = -z + z < -z + 0 = 0 z.)
- so that (0 z)x < (0 z)y,
- and so -xz < -yz.
- Now add xz + yz to both sides to get:
- -xz + xz + yz < -yz + xz + yz, or
- yz < xz.

▲ □ ▶ ▲ □ ▶ ▲

∃ >



- If x < y and z < 0,
- Then 0 z > 0,
- Why?
- (If z < 0, then 0 = -z + z < -z + 0 = 0 z.)
- so that (0-z)x < (0-z)y,
- and so -xz < -yz.
- Now add xz + yz to both sides to get:
- -xz + xz + yz < -yz + xz + yz, or
- yz < xz.

▲ □ ▶ ▲ □ ▶ ▲



- If x < y and z < 0,
- Then 0 z > 0,
- Why?
- (If z < 0, then 0 = -z + z < -z + 0 = 0 z.)

• so that 
$$(0 - z)x < (0 - z)y$$
,

- and so -xz < -yz.
- Now add xz + yz to both sides to get:
- -xz + xz + yz < -yz + xz + yz, or
- yz < xz.

・ 同 ト ・ ヨ ト ・ ヨ ト



- If x < y and z < 0,
- Then 0 z > 0,
- Why?
- (If z < 0, then 0 = -z + z < -z + 0 = 0 z.)
- so that (0 z)x < (0 z)y,
- and so -xz < -yz.
- Now add xz + yz to both sides to get:
- -xz + xz + yz < -yz + xz + yz, or
- yz < xz.

・ 同 ト ・ ヨ ト ・ ヨ ト



- If x < y and z < 0,
- Then 0 − z > 0,
- Why?
- (If z < 0, then 0 = -z + z < -z + 0 = 0 z.)
- so that (0 z)x < (0 z)y,
- and so -xz < -yz.
- Now add xz + yz to both sides to get:
- -xz + xz + yz < -yz + xz + yz, or
- yz < xz.

э

∃ >

▲ □ ▶ ▲ □ ▶ ▲

We assume that  $\mathbb{R}$  has the *least upper bound property*,. This means that any set *S* of real numbers which has an upper bound has a least upper bound *y*, which may or may not belong to *S*. It follows that any set *T* of real numbers which is bounded below has a greatest lower bound.

#### Completeness

Some definitions and properties:

- We say that a real number x is an upper bound for a subset S of ℝ, if y ≤ x for all y ∈ S.
- We say that a real number x is a lower bound for a subset S of ℝ, if y ≥ x for all y ∈ S.
- We say that a real number x is a least upper bound for a subset S of ℝ, if x is
  - an upper bound for S, and
  - a lower bound for the set of upper bounds for *S*.
- A real number x is a least upper bound for a subset S of ℝ, if an only if, for every ε > 0, there is an upper bound y for S such that x < y < x + ε. (Exercise!)</li>

# Counting

#### We say that a set S is

- Countable if S is not finite (infinite) and S can be put in 1-1 correspondence with the natural numbers  $\mathbb{N}$ .
- *Uncountable* if *S* is infinite and not countable.

The set of all rational numbers is countable. The set of real numbers is uncountable. To see why this matters, consider a function f on  $\mathbb{R}$  for which f(x) > 0 for all  $x \in \mathbb{R}$ . Then  $\sum_{x \in \mathbb{R}} f(x) = \infty$ . But many countable sums (series) converge absolutely to a finite value.

### Our old friend $\mathbb{R}^n$

You probably last saw  $\mathbb{R}^n$  in linear algebra class. It is the first, and most important, example of a vector space that we encounter. What we need to know from linear algebra:

- $(x_1, \ldots, x_n) + (y_1, \ldots, y_n) = (x_1 + y_1, \ldots, x_n + y_n) =$ vector sum.
- $c(x_1, \ldots, x_n) = (cx_1, \ldots, cx_n) = \text{scalar multiplication}.$
- $(x_1, \ldots, x_n) \cdot (y_1, \ldots, y_n) = x_1y_1 + \ldots + x_ny_n$  = the dot product.
- If  $X = (x_1, \ldots, x_n)$ ,  $||X|| = \sqrt{X \cdot X}$  = the norm of X.
- $|X \cdot Y| \le ||X|| \, ||Y||$ , the Cauchy-Schwartz inequality.

A norm is supposed to satisfy the *Triangle Inequality*. Let's see if this norm does.

- $||X + Y||^2 = (X + Y) \cdot (X + Y) = X \cdot X + 2X \cdot Y + Y \cdot Y$ ,
- $= ||X||^2 + 2X \cdot Y + ||Y||^2$
- $\leq ||X||^2 + 2 ||X|| ||Y|| + ||Y||^2$ ,
- $= (||X|| + ||Y||)^2.$
- Take the square root of both sides, and we get  $||X + Y|| \le ||X|| + ||Y||$ , the Triangle Inequality.

A norm is supposed to satisfy the *Triangle Inequality*. Let's see if this norm does.

• 
$$||X + Y||^2 = (X + Y) \cdot (X + Y) = X \cdot X + 2X \cdot Y + Y \cdot Y$$
,

• 
$$= ||X||^2 + 2X \cdot Y + ||Y||^2$$
,

• 
$$\leq ||X||^2 + 2 ||X|| ||Y|| + ||Y||^2$$
,

• 
$$= (||X|| + ||Y||)^2.$$

• Take the square root of both sides, and we get 
$$||X + Y|| \le ||X|| + ||Y||$$
, the Triangle Inequality.

- 4 15

A norm is supposed to satisfy the *Triangle Inequality*. Let's see if this norm does.

• 
$$||X + Y||^2 = (X + Y) \cdot (X + Y) = X \cdot X + 2X \cdot Y + Y \cdot Y$$
,

• 
$$= ||X||^2 + 2X \cdot Y + ||Y||^2$$
,

• 
$$\leq \|X\|^2 + 2\|X\| \|Y\| + \|Y\|^2$$
,

• 
$$= (||X|| + ||Y||)^2.$$

• Take the square root of both sides, and we get  $||X + Y|| \le ||X|| + ||Y||$ , the Triangle Inequality.

/₽ ► < ∃ ►

A norm is supposed to satisfy the *Triangle Inequality*. Let's see if this norm does.

• 
$$||X + Y||^2 = (X + Y) \cdot (X + Y) = X \cdot X + 2X \cdot Y + Y \cdot Y$$
,

• 
$$= ||X||^2 + 2X \cdot Y + ||Y||^2$$

• 
$$\leq ||X||^2 + 2 ||X|| ||Y|| + ||Y||^2$$
,

• 
$$= (||X|| + ||Y||)^2.$$

• Take the square root of both sides, and we get  $||X + Y|| \le ||X|| + ||Y||$ , the Triangle Inequality.

/₽ ► < ∃ ►

A norm is supposed to satisfy the *Triangle Inequality*. Let's see if this norm does.

• 
$$||X + Y||^2 = (X + Y) \cdot (X + Y) = X \cdot X + 2X \cdot Y + Y \cdot Y$$
,

• 
$$= ||X||^2 + 2X \cdot Y + ||Y||^2$$

• 
$$\leq \|X\|^2 + 2\|X\|\|Y\| + \|Y\|^2$$
,

• 
$$= (||X|| + ||Y||)^2.$$

• Take the square root of both sides, and we get 
$$||X + Y|| \le ||X|| + ||Y||$$
, the Triangle Inequality.

A 10

The Cauchy-Schwartz inequality also gives us  $\left|\frac{X}{\|X\|} \cdot \frac{Y}{|Y|}\right| \leq 1$ . We get equality if and only if X and Y are parallel. This suggests that we identify  $\frac{X}{\|X\|} \cdot \frac{Y}{|Y|}$  with  $\cos(\theta)$  where  $\theta$  is the angle between X and Y.

The most important angle for linear algebra or multi-variable calculus is the right angle,  $\frac{\pi}{2}$ , which has a cosine of 0. So we say that vectors X and Y in  $\mathbb{R}^n$  are orthogonal (a fancy word for perpendicular) if  $X \cdot Y = 0$ .

You may recall from Calculus III, that a plane through  $(x_0, y_0, z_0)$  with normal vector  $(A, B, C) \neq 0$  has equation

$$(A, B, C) \cdot (x - x_0, y - y_0, z - z_0) = A (x - x_0) + B (y - y_0) + C (z - z_0) = 0.$$

This plane is a surface with dimension 2 in  $\mathbb{R}^3$ . Since, at any point of the surface, the set of vectors that are normal (perpendicular) to the surface has dimension 1, we say that the surface has co-dimension 1.

#### More Hyperplanes

Similarly, in  $\mathbb{R}^n$ , the equation

$$(A_1, \ldots, A_n) \cdot (x_1 - x_{10}, \ldots, x_n - x_{n0})$$
  
=  $A_1 (x - x_{10}) + \ldots + A_n (x_n - x_{n0}) = 0.$ 

describes a flat subset of  $\mathbb{R}^n$  with dimension n-1, co-dimension 1, through  $(x_{10}, \ldots, x_{n0})$ , and with normal vector  $(A_1, \ldots, A_n)$ , which we assume is not 0. We call this set "hyperplane". If we use the word "plane" to describe a subset of  $\mathbb{R}^n$  with n > 3, we should mean a flat set with dimension 2.

To determine the dimension of a hyperplane, let  $y_i = x_i - x_{i0}$ ,  $i = 1, \ldots, n$ . Then we have

$$A_1y_1+\ldots+A_ny_n=0.$$

This is a linear homogeneous equation for which the matrix  $(A_1 \dots A_n)$  has rank 1, so that the null space has dimension n-1.

Recall from Calculus III that there are several ways to describe a line in  $\mathbb{R}^3$  with equations:

- Scalar Parametric Equations:  $x = x_0 + v_1 t$ ,  $y = y_0 + v_2 t$ ,  $z = z_0 + v_3 t$ ,  $-\infty < t < \infty$ .
- Vector Parametric Equations:  $(x, y, z) = (x_0, y_0, z_0) + (v_1, v_2, v_3) t, -\infty < t < \infty.$
- Symmetric Equations:  $\frac{x-x_0}{v_1} = \frac{y-y_0}{v_2} = \frac{z-z_0}{v_3}$ , when no  $v_i = 0$ .

Recall from Calculus III that there are several ways to describe a line in  $\mathbb{R}^3$  with equations:

- Scalar Parametric Equations:  $x = x_0 + v_1 t$ ,  $y = y_0 + v_2 t$ ,  $z = z_0 + v_3 t$ ,  $-\infty < t < \infty$ .
- Vector Parametric Equations:  $(x, y, z) = (x_0, y_0, z_0) + (v_1, v_2, v_3) t, -\infty < t < \infty.$
- Symmetric Equations:  $\frac{x-x_0}{v_1} = \frac{y-y_0}{v_2} = \frac{z-z_0}{v_3}$ , when no  $v_i = 0$ .

Recall from Calculus III that there are several ways to describe a line in  $\mathbb{R}^3$  with equations:

- Scalar Parametric Equations:  $x = x_0 + v_1 t$ ,  $y = y_0 + v_2 t$ ,  $z = z_0 + v_3 t$ ,  $-\infty < t < \infty$ .
- Vector Parametric Equations:  $(x, y, z) = (x_0, y_0, z_0) + (v_1, v_2, v_3) t, -\infty < t < \infty.$
- Symmetric Equations:  $\frac{x-x_0}{v_1} = \frac{y-y_0}{v_2} = \frac{z-z_0}{v_3}$ , when no  $v_i = 0$ .

### Lines in $\mathbb{R}^n$

#### Similarly, in $\mathbb{R}^n$ we have:

- Scalar Parametric Equations:  $x_i = x_{i0} + v_i t$ ,  $i = 1, \ldots, n$ ,  $-\infty < t < \infty$ .
- Vector Parametric Equations:  $(x_1, \ldots, x_n) = (x_{10}, \ldots, x_{n0}) + (v_1, \ldots, v_n) t, -\infty < t < \infty,$ or  $\mathbf{x} = \mathbf{x}_0 + \mathbf{v}t.$
- Symmetric Equations:  $\frac{x_i x_{i0}}{v_i}$  is independent of *i*.

For lines in  $\mathbb{R}^n$  we usually stick with Scalar or Vector Parametric equations.

### Lines in $\mathbb{R}^n$

Similarly, in  $\mathbb{R}^n$  we have:

- Scalar Parametric Equations:  $x_i = x_{i0} + v_i t$ ,  $i = 1, \ldots, n$ ,  $-\infty < t < \infty$ .
- Vector Parametric Equations:  $(x_1, \ldots, x_n) = (x_{10}, \ldots, x_{n0}) + (v_1, \ldots, v_n) t, -\infty < t < \infty,$ or  $\mathbf{x} = \mathbf{x}_0 + \mathbf{v}t.$
- Symmetric Equations:  $\frac{x_i x_{i0}}{v_i}$  is independent of *i*.

For lines in  $\mathbb{R}^n$  we usually stick with Scalar or Vector Parametric equations.

If p and q are distinct points in  $\mathbb{R}^n$ , we can use q - p as a direction vector for the line though p and q:  $\mathbf{x} = p + \lambda(q - p)$ ,  $-\infty < \lambda < \infty$ . Then  $0 \le \lambda \le 1$  corresponds to the closed line segment from p to q, which we denote as [p, q].

We say that a subset S of  $\mathbb{R}^n$  is *convex*, if for every pair p, q of points in S, the closed line segment [p, q] is contained in S. Convexity is one of the most important concepts in mathematical analysis.

### Open ball

The open ball in  $\mathbb{R}^n$  with radius r > 0 and center  $x_0 \in \mathbb{R}^n$  is

$$B(x_0, r) = \{x \in \mathbb{R}^n : ||x - x_0|| < r\}.$$

We show that B(0, r) is convex. Suppose  $p, q \in \mathbb{R}^n$  so that  $\|p\|, \|q\| < r$ . Then for  $0 \le lambda \le 1$ ,

 $\|(1-\lambda)p+\lambda q\| \leq (1-\lambda) \|p\|+lambda \|q\| < (1-\lambda)r+lambdar = r.$ 

Here we have used the Triangle Inequality and the homogeneity of the norm.

Thus every point of the line segment [p.q] is an element of B(0, r). So B(0, r) is convex.

・ 同 ト ・ ヨ ト ・ ヨ ト