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The real numbers R

The set of real numbers R is a complete ordered field. It is the
only one.
Properties:

© Addition and multiplication are associative and commutative.

@ There is an additive identity, "1", and a multiplicative
identity, "0".

© Every real number x has an additive inverse, which is a real
number —x, such that x + (—x) = 0.

@ Every non-zero real number x has a multplicative inverse,
which is a real number 1, such that x = (1) = 1.

X
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The real numbers R

Properties 1 - 4 characterize R as a field. Other fields include Q,
C, Zp—the rational numbers, the complex numbers, and the
integers mod p, when p is a prime number.
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The real numbers R

Order properties of R

© For every pair of real numbers x and y, exactly one of the
following is true:

X=y, x>y, x<y.

@ If x <y and y < z, then x < z, (Transitive)
Q Ifx<y, thenx+z<y+zforany zeR.
Q If x<yand z>0, then xz < yz.

Have we left something out?
There are two ordered fields, Q and R.
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The real numbers R

Let's try to prove this:
If x <y and z <0, then xz > yz.

Multiplication of an inequality by a negative number reverses the
inequality.
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The real numbers R

o If x<yandz<0,
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The real numbers R

o If x<yandz<0,
@ Then0—2z>0,
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o If x<yandz<0,
@ Then0—2z>0,
o Why?
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The real numbers R

o If x<yandz<0,

@ Then0—2z>0,

o Why?

o (Ifz<0,then0=—-2z+z<—-2z+0=0-2)
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The real numbers R

o If x<yandz<0,

@ Then 0 -z >0,

o Why?

o (Ifz<0,then0=—-2z+z<—-2z+0=0-2)
@ so that (0 — z)x < (0 — 2)y,
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The real numbers R

o If x<yandz<0,

@ Then0—2z>0,

o Why?

o (Ifz<0,then0=—-2z+z<—-2z+0=0-2)
@ so that (0 — z)x < (0 — 2)y,

@ and so —xz < —yz.
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The real numbers R

o If x<yandz<0,

@ Then0—2z >0,

o Why?

o (Ifz<0,then0=—-2z+z<—-2z+0=0-2)

@ so that (0 — z)x < (0 — 2)y,

@ and so —xz < —yz.

o Now add xz + yz to both sides to get:

@ XZ+Xxz+yz< —yz—+Xxz+yz, or

0 yz < xz. L]
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The real numbers R

Completeness

We assume that R has the least upper bound property,. This
means that any set S of real numbers which has an upper bound
has a least upper bound y, which may or may not belong to S. It
follows that any set T of real numbers which is bounded below has
a greatest lower bound.
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The real numbers R

Completeness

Some definitions and properties:

@ We say that a real number x is an upper bound for a subset S
of R, if y < xforally eS.

o We say that a real number x is a lower bound for a subset S
of R, if y > x forall y € §.
@ We say that a real number x is a least upper bound for a
subset S of R, if x is
e an upper bound for S, and
o a lower bound for the set of upper bounds for S.
@ A real number x is a least upper bound for a subset S of R, if
an only if, for every € > 0, there is an upper bound y for S
such that x < y < x + €. (Exercise!)

Professor David Wagner Advanced Calculus



The real numbers R

Counting

We say that aset S is

e Countable if S is not finite (infinite) and S can be put in 1-1
correspondence with the natural numbers N.

@ Uncountable if S is infinite and not countable.
The set of all rational numbers is countable. The set of real
numbers is uncountable. To see why this matters, consider a
function f on R for which f(x) > 0 for all x € R. Then
> xer f(x) = co. But many countable sums (series) converge
absolutely to a finite value.
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The vector space R”

Our old friend R"

You probably last saw R” in linear algebra class. It is the first, and
most important, example of a vector space that we encounter.
What we need to know from linear algebra:

* (X17 sy Xn)+(y17 B yn):(xl+y1, EER) Xn+.yf7):
vector sum.

@ c(xq, ..., xp) =(cx1, ..., cxp) = scalar multiplication.

 (x1, ...y Xn)- (1, «-+y, ¥Yn) =x1y1+ ...+ Xnyn = the dot
product.

o If X =(x1, ..., xn), | X]| = VXX = the norm of X.

|X - Y] <|IX|||IY]], the Cauchy-Schwartz inequality.
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The vector space R”

Triangle Inequality

A norm is supposed to satisfy the Triangle Inequality. Let's see if
this norm does.

O X+ YP=(X+Y)- (X+Y)=X-X+2X-Y+Y-Y,
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The vector space R”

Triangle Inequality

A norm is supposed to satisfy the Triangle Inequality. Let's see if
this norm does.

O X+ YP=(X+Y)- (X+Y)=X-X+2X-Y+Y-Y,
° = [IX[I* +2X - Y + || Y],
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The vector space R”

Triangle Inequality

A norm is supposed to satisfy the Triangle Inequality. Let's see if
this norm does.

O X+ YP=(X+Y)- (X+Y)=X-X+2X-Y+Y-Y,
° = [IX[I* +2X - Y + || Y]%,
° < IXIZ+ 20X Y+ Y12,
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The vector space R”

Triangle Inequality

A norm is supposed to satisfy the Triangle Inequality. Let's see if
this norm does.

O X+ YP=(X+Y)- (X+Y)=X-X+2X-Y+Y-Y,

o =[XIP+2X-Y Y|P
o < IXIPH20XIYI+ Y
o =(IXI+IYI*
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The vector space R”

Triangle Inequality

A norm is supposed to satisfy the Triangle Inequality. Let's see if
this norm does.

O X+ YP=(X+Y)- (X+Y)=X-X+2X-Y+Y-Y,

o =[XIP+2X-Y Y|P
o < IXIPH20XIYI+ Y
o =(IXI+IYI*

@ Take the square root of both sides, and we get
| X + Y| <[ X]|+ [|Y]| the Triangle Inequality.
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The vector space R”

The Cauchy-Schwartz inequality also gives us ‘H))g—” . %‘ < 1. We

get equality if and only if X and Y are parallel. This suggests that
we identify ﬁ . % with cos(6) where 0 is the angle between X
and Y.

The most important angle for linear algebra or multi-variable
calculus is the right angle, 5, which has a cosine of 0. So we say
that vectors X and Y in R" are orthogonal (a fancy word for

perpendicular) if X - Y =0.
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The vector space R”

Hyperplanes

You may recall from Calculus Ill, that a plane through (xo, yo, 20)
with normal vector (A, B, C) # 0 has equation

(A’ B) C)'(X_X(va_y()uz_z())
=A(x—x0) + B(y —y0) + C(z - 2)
0.

This plane is a surface with dimension 2 in R3. Since, at any point
of the surface, the set of vectors that are normal (perpendicular) to
the surface has dimension 1, we say that the surface has
co-dimension 1.
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The vector space R”

More Hyperplanes

Similarly, in R", the equation

(A1, ..., Ap)- (2 —x10, -5 Xn — Xn0)
:Al(X—X10)+...+An(Xn—Xn0):0.

describes a flat subset of R” with dimension n — 1, co-dimension 1,
through (x10, ..., Xn0), and with normal vector (A1, ..., Ap),
which we assume is not 0. We call this set "hyperplane”. If we use
the word " plane” to describe a subset of R” with n > 3, we should
mean a flat set with dimension 2.
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The vector space R”

To determine the dimension of a hyperplane, let y; = x; — xjo,
i=1, ..., n. Then we have

Ay + ...+ Ay, =0.

This is a linear homogeneous equation for which the matrix
(A1 .. .A,,) has rank 1, so that the null space has dimension n — 1.
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The vector space R”

Recall from Calculus Il that there are several ways to describe a
line in R3 with equations:

@ Scalar Parametric Equations: x = xg + vit, y = yg + vot,
z=2zy+ wvat, —o0 < t < 00.
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The vector space R”

Recall from Calculus Il that there are several ways to describe a
line in R3 with equations:

@ Scalar Parametric Equations: x = xg + vit, y = yg + vot,
z=2zy+ wvat, —o0 < t < 00.

@ Vector Parametric Equations:
(vaaz) = (X07y0720) + (Vla V2, V3) t, —oo <t < o0.
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The vector space R”

Recall from Calculus Il that there are several ways to describe a
line in R3 with equations:
@ Scalar Parametric Equations: x = xg + vit, y = yg + vot,
z=2zy+ wvat, —o0 < t < 00.
@ Vector Parametric Equations:
(vaaz) = (X07y0720) + (Vla V2, V3) t, —oo <t < o0.

® Symmetric Equations: *%¢ = Y=Y — 2220 when no v; = 0.

v v3
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The vector space R”

Lines in R”

Similarly, in R” we have:

@ Scalar Parametric Equations: x; = xjo + vjt, i=1, ..., n,
—o00 < t < 0.

For lines in R™ we usually stick with Scalar or Vector Parametric
equations.
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The vector space R”

Lines in R”

Similarly, in R” we have:
@ Scalar Parametric Equations: x; = xjo + v;t, i =1, ...
—o0 < t < o0.
@ Vector Parametric Equations:

(X1, yXn) = (X120, -+ -5 Xn0) + (V1, ..., vp) t, —00 < t < 00,
or X = Xqg + Vt.

e Symmetric Equations: > is independent of .

For lines in R™ we usually stick with Scalar or Vector Parametric
equations.
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The vector space R”

Line segments

If p and g are distinct points in R”, we can use g — p as a
direction vector for the line though p and g: x = p+ A(q — p),
—00 < A < o0. Then 0 < X <1 corresponds to the closed line

segment from p to g, which we denote as [p, q].
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The vector space R”

Convexity

We say that a subset S of R” is convex, if for every pair p, g of
points in S, the closed line segment [p, g] is contained in S.
Convexity is one of the most important concepts in mathematical
analysis.
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The vector space R”

Open ball

The open ball in R" with radius r > 0 and center xp € R" is
B(xo,r) ={x€R": ||x—xo| < r}.

We show that B (0, r) is convex. Suppose p, g € R" so that
llpll, llgll < r. Then for 0 < lambda < 1,

(1 = XN)p+ Mgl < (1=X) ||pl|+lambdal||q|| < (1—\)r-+lambdar = r.

Here we have used the Triangle Inequality and the homogeneity of
the norm.

Thus every point of the line segment [p.q]| is an element of B(0, r).
So B(0,r) is convex.
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