## Advanced Calculus

Professor David Wagner

${ }^{1}$ Department of Mathematics<br>University of Houston

August 19

## Who am I, contact info

Professor David Wagner
Office 615 PGH, Phone 713-743-3460
Course web page https://www.math.uh.edu/~wagner/3334/
math_3334_fall_2019.html
Start with https://www.math.uh.edu/~wagner, click on link for Teaching, then click on link for 3334.

The set of real numbers $\mathbb{R}$ is a complete ordered field. It is the only one.
Properties:
(1) Addition and multiplication are associative and commutative.
(2) There is an additive identity, " 1 ", and a multiplicative identity, " 0 ".
(3) Every real number $x$ has an additive inverse, which is a real number $-x$, such that $x+(-x)=0$.
(9) Every non-zero real number $x$ has a multplicative inverse, which is a real number $\frac{1}{x}$, such that $x *\left(\frac{1}{x}\right)=1$.

Properties 1-4 characterize $\mathbb{R}$ as a field. Other fields include $\mathbb{Q}$, $\mathbb{C}, \mathbb{Z}_{p}$-the rational numbers, the complex numbers, and the integers $\bmod p$, when $p$ is a prime number.

## Order properties of $\mathbb{R}$

(1) For every pair of real numbers $x$ and $y$, exactly one of the following is true:

$$
x=y, x>y, x<y
$$

(2) If $x<y$ and $y<z$, then $x<z$, (Transitive)
(3) If $x<y$, then $x+z<y+z$ for any $z \in \mathbb{R}$.
(9) If $x<y$ and $z>0$, then $x z<y z$.

Have we left something out?
There are two ordered fields, $\mathbb{Q}$ and $\mathbb{R}$.

Let's try to prove this:
If $x<y$ and $z<0$, then $x z>y z$.
Multiplication of an inequality by a negative number reverses the inequality.

## Proof

- If $x<y$ and $z<0$,
- Then $0-z>0$,
- Why?
- (If $z<0$, then $0=-z+z<-z+0=0-z$.)
- so that $(0-z) x<(0-z) y$,
- and so $-x z<-y z$.
- Now add $x z+y z$ to both sides to get:
- $-x z+x z+y z<-y z+x z+y z$, or
- $y z<x z$.


## Proof

- If $x<y$ and $z<0$,
- Then $0-z>0$,
- Why?
- (If $z<0$, then $0=-z+z<-z+0=0-z$.)
- so that $(0-z) x<(0-z) y$.
- and so $-x z<-y z$.
- Now add $x z+y z$ to both sides to get:
- $-x z+x z+y z<-y z+x z+y z$, or
- $y z<x z$.


## Proof

- If $x<y$ and $z<0$,
- Then $0-z>0$,
- Why?
- (If $z<0$, then $0=-z+z<-z+0=0-z$.)
- so that $(0-z) x<(0-z) y$,
- and so $-x z<-y z$.
- Now add $x z+y z$ to both sides to get:
- $-x z+x z+y z<-y z+x z+y z$, or
- $y z<x z$.


## Proof

- If $x<y$ and $z<0$,
- Then $0-z>0$,
- Why?
- (If $z<0$, then $0=-z+z<-z+0=0-z$.)
- so that $(0-z) x<(0-z) y$,
- and so $-x z<-y z$.
- Now add $x z+y z$ to both sides to get:
- $-x z+x z+y z<-y z+x z+y z$, or
- $y z<x z$.


## Proof

- If $x<y$ and $z<0$,
- Then $0-z>0$,
- Why?
- (If $z<0$, then $0=-z+z<-z+0=0-z$.)
- so that $(0-z) x<(0-z) y$,
- and so $-x z<-y z$.
- Now add $x z+y z$ to both sides to get:
- $-x z+x z+y z<-y z+x z+y z$, or



## Proof

- If $x<y$ and $z<0$,
- Then $0-z>0$,
- Why?
- (If $z<0$, then $0=-z+z<-z+0=0-z$.)
- so that $(0-z) x<(0-z) y$,
- and so $-x z<-y z$.
- Now add $x z+y z$ to both sides to get:
- $-x z+x z+y z<-y z+x z+y z$, or
- $y z<x z$.


## Proof

- If $x<y$ and $z<0$,
- Then $0-z>0$,
- Why?
- (If $z<0$, then $0=-z+z<-z+0=0-z$.)
- so that $(0-z) x<(0-z) y$,
- and so $-x z<-y z$.
- Now add $x z+y z$ to both sides to get:
- $-x z+x z+y z<-y z+x z+y z$, or
- $y z<x z$.


## Completeness

We assume that $\mathbb{R}$ has the least upper bound property,. This means that any set $S$ of real numbers which has an upper bound has a least upper bound $y$, which may or may not belong to $S$. It follows that any set $T$ of real numbers which is bounded below has a greatest lower bound.

## Completeness

Some definitions and properties:

- We say that a real number $x$ is an upper bound for a subset $S$ of $\mathbb{R}$, if $y \leq x$ for all $y \in S$.
- We say that a real number $x$ is a lower bound for a subset $S$ of $\mathbb{R}$, if $y \geq x$ for all $y \in S$.
- We say that a real number $x$ is a least upper bound for a subset $S$ of $\mathbb{R}$, if $x$ is
- an upper bound for $S$, and
- a lower bound for the set of upper bounds for $S$.
- A real number $x$ is a least upper bound for a subset $S$ of $\mathbb{R}$, if an only if, for every $\epsilon>0$, there is an upper bound $y$ for $S$ such that $x<y<x+\epsilon$. (Exercise!)


## Counting

We say that a set $S$ is

- Countable if $S$ is not finite (infinite) and $S$ can be put in 1-1 correspondence with the natural numbers $\mathbb{N}$.
- Uncountable if $S$ is infinite and not countable.

The set of all rational numbers is countable. The set of real numbers is uncountable. To see why this matters, consider a function $f$ on $\mathbb{R}$ for which $f(x)>0$ for all $x \in \mathbb{R}$. Then $\sum_{x \in \mathbb{R}} f(x)=\infty$. But many countable sums (series) converge absolutely to a finite value.

## Our old friend $\mathbb{R}^{n}$

You probably last saw $\mathbb{R}^{n}$ in linear algebra class. It is the first, and most important, example of a vector space that we encounter. What we need to know from linear algebra:

- $\left(x_{1}, \ldots, x_{n}\right)+\left(y_{1}, \ldots, y_{n}\right)=\left(x_{1}+y_{1}, \ldots, x_{n}+y_{n}\right)=$ vector sum.
- $c\left(x_{1}, \ldots, x_{n}\right)=\left(c x_{1}, \ldots, c x_{n}\right)=$ scalar multiplication.
- $\left(x_{1}, \ldots, x_{n}\right) \cdot\left(y_{1}, \ldots, y_{n}\right)=x_{1} y_{1}+\ldots+x_{n} y_{n}=$ the dot product.
- If $X=\left(x_{1}, \ldots, x_{n}\right),\|X\|=\sqrt{X \cdot X}=$ the norm of $X$.
- $|X \cdot Y| \leq\|X\|\|Y\|$, the Cauchy-Schwartz inequality.


## Triangle Inequality

A norm is supposed to satisfy the Triangle Inequality. Let's see if this norm does.

- $\|X+Y\|^{2}=(X+Y) \cdot(X+Y)=X \cdot X+2 X \cdot Y+Y \cdot Y$,

- Take the square root of both sides, and we get $\|X+Y\| \leq\|X\|+\|Y\|$, the Triangle Inequality.


## Triangle Inequality

A norm is supposed to satisfy the Triangle Inequality. Let's see if this norm does.

- $\|X+Y\|^{2}=(X+Y) \cdot(X+Y)=X \cdot X+2 X \cdot Y+Y \cdot Y$,
- $\quad=\|X\|^{2}+2 X \cdot Y+\|Y\|^{2}$,
- Take the square root of both sides, and we get $\|X+Y\| \leq\|X\|+\|Y\|$, the Triangle Inequality.


## Triangle Inequality

A norm is supposed to satisfy the Triangle Inequality. Let's see if this norm does.

- $\|X+Y\|^{2}=(X+Y) \cdot(X+Y)=X \cdot X+2 X \cdot Y+Y \cdot Y$,
- $\quad=\|X\|^{2}+2 X \cdot Y+\|Y\|^{2}$,
- $\quad \leq\|X\|^{2}+2\|X\|\|Y\|+\|Y\|^{2}$,
- Take the square root of both sides, and we get $\|X+Y\| \leq\|X\|+\|Y\|$, the Triangle Inequality.


## Triangle Inequality

A norm is supposed to satisfy the Triangle Inequality. Let's see if this norm does.

- $\|X+Y\|^{2}=(X+Y) \cdot(X+Y)=X \cdot X+2 X \cdot Y+Y \cdot Y$,
- $\quad=\|X\|^{2}+2 X \cdot Y+\|Y\|^{2}$,
- $\quad \leq\|X\|^{2}+2\|X\|\|Y\|+\|Y\|^{2}$,
- $\quad=(\|X\|+\|Y\|)^{2}$.
- Take the square root of both sides, and we get $\|X+Y\| \leq\|X\|+\|Y\|$, the Triangle Inequality.


## Triangle Inequality

A norm is supposed to satisfy the Triangle Inequality. Let's see if this norm does.

- $\|X+Y\|^{2}=(X+Y) \cdot(X+Y)=X \cdot X+2 X \cdot Y+Y \cdot Y$,
- $\quad=\|X\|^{2}+2 X \cdot Y+\|Y\|^{2}$,
- $\quad \leq\|X\|^{2}+2\|X\|\|Y\|+\|Y\|^{2}$,
- $\quad=(\|X\|+\|Y\|)^{2}$.
- Take the square root of both sides, and we get $\|X+Y\| \leq\|X\|+\|Y\|$, the Triangle Inequality.


## Angles

The Cauchy-Schwartz inequality also gives us $\left|\frac{X}{\|X\|} \cdot \frac{Y}{|Y|}\right| \leq 1$. We get equality if and only if $X$ and $Y$ are parallel. This suggests that we identify $\frac{X}{\|X\|} \cdot \frac{Y}{|Y|}$ with $\cos (\theta)$ where $\theta$ is the angle between $X$ and $Y$.
The most important angle for linear algebra or multi-variable calculus is the right angle, $\frac{\pi}{2}$, which has a cosine of 0 . So we say that vectors $X$ and $Y$ in $\mathbb{R}^{n}$ are orthogonal (a fancy word for perpendicular) if $X \cdot Y=0$.

## Hyperplanes

You may recall from Calculus III, that a plane through $\left(x_{0}, y_{0}, z_{0}\right)$ with normal vector $(A, B, C) \neq 0$ has equation

$$
\begin{aligned}
& (A, B, C) \cdot\left(x-x_{0}, y-y_{0}, z-z_{0}\right) \\
& \quad=A\left(x-x_{0}\right)+B\left(y-y_{0}\right)+C\left(z-z_{0}\right) \\
& \quad=0
\end{aligned}
$$

This plane is a surface with dimension 2 in $\mathbb{R}^{3}$. Since, at any point of the surface, the set of vectors that are normal (perpendicular) to the surface has dimension 1 , we say that the surface has co-dimension 1.

## More Hyperplanes

Similarly, in $\mathbb{R}^{n}$, the equation

$$
\begin{aligned}
& \left(A_{1}, \ldots, A_{n}\right) \cdot\left(x_{1}-x_{10}, \ldots, x_{n}-x_{n 0}\right) \\
& \quad=A_{1}\left(x-x_{10}\right)+\ldots+A_{n}\left(x_{n}-x_{n 0}\right)=0
\end{aligned}
$$

describes a flat subset of $\mathbb{R}^{n}$ with dimension $n-1$, co-dimension 1 , through $\left(x_{10}, \ldots, x_{n 0}\right)$, and with normal vector $\left(A_{1}, \ldots, A_{n}\right)$, which we assume is not 0 . We call this set "hyperplane". If we use the word "plane" to describe a subset of $\mathbb{R}^{n}$ with $n>3$, we should mean a flat set with dimension 2.

To determine the dimension of a hyperplane, let $y_{i}=x_{i}-x_{i 0}$, $i=1, \ldots, n$. Then we have

$$
A_{1} y_{1}+\ldots+A_{n} y_{n}=0
$$

This is a linear homogeneous equation for which the matrix $\left(A_{1} \ldots A_{n}\right)$ has rank 1 , so that the null space has dimension $n-1$.

## Lines

Recall from Calculus III that there are several ways to describe a line in $\mathbb{R}^{3}$ with equations:

- Scalar Parametric Equations: $x=x_{0}+v_{1} t, y=y_{0}+v_{2} t$, $z=z_{0}+v_{3} t,-\infty<t<\infty$.
- Vector Parametric Equations: $(x, y, z)=\left(x_{0}, y_{0}, z_{0}\right)+\left(v_{1}, v_{2}, v_{3}\right) t,-\infty<t<\infty$.
- Symmetric Equations: $\frac{x-x_{0}}{v_{1}}=\frac{y-y_{0}}{v_{2}}=\frac{z-z_{0}}{v_{3}}$, when no $v_{i}=0$


## Lines

Recall from Calculus III that there are several ways to describe a line in $\mathbb{R}^{3}$ with equations:

- Scalar Parametric Equations: $x=x_{0}+v_{1} t, y=y_{0}+v_{2} t$, $z=z_{0}+v_{3} t,-\infty<t<\infty$.
- Vector Parametric Equations:

$$
(x, y, z)=\left(x_{0}, y_{0}, z_{0}\right)+\left(v_{1}, v_{2}, v_{3}\right) t,-\infty<t<\infty .
$$

- Symmetric Equations:
when no $v_{i}=0$


## Lines

Recall from Calculus III that there are several ways to describe a line in $\mathbb{R}^{3}$ with equations:

- Scalar Parametric Equations: $x=x_{0}+v_{1} t, y=y_{0}+v_{2} t$, $z=z_{0}+v_{3} t,-\infty<t<\infty$.
- Vector Parametric Equations:

$$
(x, y, z)=\left(x_{0}, y_{0}, z_{0}\right)+\left(v_{1}, v_{2}, v_{3}\right) t,-\infty<t<\infty .
$$

- Symmetric Equations: $\frac{x-x_{0}}{v_{1}}=\frac{y-y_{0}}{v_{2}}=\frac{z-z_{0}}{v_{3}}$, when no $v_{i}=0$.


## Lines in $\mathbb{R}^{n}$

Similarly, in $\mathbb{R}^{n}$ we have:

- Scalar Parametric Equations: $x_{i}=x_{i 0}+v_{i} t, i=1, \ldots, n$, $-\infty<t<\infty$.
- Vector Parametric Equations: $\left(x_{1}, \ldots, x_{n}\right)=\left(x_{10}, \ldots, x_{n 0}\right)+\left(v_{1}, \ldots, v_{n}\right) t,-\infty<t<\infty$ or $\mathbf{x}=\mathbf{x}_{0}+\mathbf{v} t$.
- Symmetric Equations: $\frac{x_{i}-x_{i 0}}{v_{i}}$ is independent of $i$

For lines in $\mathbb{R}^{n}$ we usually stick with Scalar or Vector Parametric equations.

## Lines in $\mathbb{R}^{n}$

Similarly, in $\mathbb{R}^{n}$ we have:

- Scalar Parametric Equations: $x_{i}=x_{i 0}+v_{i} t, i=1, \ldots, n$, $-\infty<t<\infty$.
- Vector Parametric Equations: $\left(x_{1}, \ldots, x_{n}\right)=\left(x_{10}, \ldots, x_{n 0}\right)+\left(v_{1}, \ldots, v_{n}\right) t,-\infty<t<\infty$, or $\mathbf{x}=\mathbf{x}_{0}+\mathbf{v} t$.
- Symmetric Equations: $\frac{x_{i}-x_{i 0}}{v_{i}}$ is independent of $i$.

For lines in $\mathbb{R}^{n}$ we usually stick with Scalar or Vector Parametric equations.

## Line segments

If $p$ and $q$ are distinct points in $\mathbb{R}^{n}$, we can use $q-p$ as a direction vector for the line though $p$ and $q: \mathbf{x}=p+\lambda(q-p)$, $-\infty<\lambda<\infty$. Then $0 \leq \lambda \leq 1$ corresponds to the closed line segment from $p$ to $q$, which we denote as $[p, q]$.

## Convexity

We say that a subset $S$ of $\mathbb{R}^{n}$ is convex, if for every pair $p, q$ of points in $S$, the closed line segment $[p, q]$ is contained in $S$. Convexity is one of the most important concepts in mathematical analysis.

## Open ball

The open ball in $\mathbb{R}^{n}$ with radius $r>0$ and center $x_{0} \in \mathbb{R}^{n}$ is

$$
B\left(x_{0}, r\right)=\left\{x \in \mathbb{R}^{n}:\left\|x-x_{0}\right\|<r\right\} .
$$

We show that $B(0, r)$ is convex. Suppose $p, q \in \mathbb{R}^{n}$ so that $\|p\|,\|q\|<r$. Then for $0 \leq$ lambda $\leq 1$,

$$
\|(1-\lambda) p+\lambda q\| \leq(1-\lambda)\|p\|+\text { lambda }\|q\|<(1-\lambda) r+\text { lambdar }=r
$$

Here we have used the Triangle Inequality and the homogeneity of the norm.
Thus every point of the line segment [p.q] is an element of $B(0, r)$. So $B(0, r)$ is convex.

