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Definition of function

Our main objects of study are functions.

Definition

Let n and m be natural numbers, and let Ω be a subset of Rn. A
function from Ω to Rm is a rule that assigns to each x ∈ Ω a
unique point f (x) ∈ Rm.
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Examples

Example

A curve in Rm can be parameterized by a function f : (a, b)→ Rm.

Example

This function maps R2 to itself: f (x , y) =
(
x2 − y2, 2xy

)
. This is

the same mapping of R2 that is given in complex form as
F (z) = z2.

Example

We can map a region in R2 into R3 to parameterize a surface:

x = φ(u, v), y = ψ(u, v), z = θ(u, v), (u, v) ∈ Ω.

Professor David Wagner Advanced Calculus



Functions
Topology of Rn

Another example

Example

A mathematically perfect mountain might have an elevation
function given by

f (x , y) =

{
30, 000− x2 − y2, x2 + y2 ≤ 30, 000

0, otherwise

But perfection is in the eye of the beholder. Note that the graph
of this function is also a surface.
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Surfaces as level sets

As we saw last class, a surface can occur as a level set of a
function on R3.

Example

If f (x , y , z) = x2 + y2 + z2, what are the level sets of f ?
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Graph of a function

Definition

Let Ω be a subset of Rn, and let f be a function from Ω to Rm.
The em graph of f is the set {(x , f (x)) : x ∈ Ω}. It is a subset of
Ω× Rm which is a subset of Rn × Rm.

Example

For example, if f (x) = x for all x ∈ Ω, then f : Ω→ Ω and the
graph of f is {(x , x) : x ∈ Ω}.

When n + m > 3 it is difficult to visualize the graph of a function
which maps Ω ⊂ Rn → Rm.
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Convexity

Definition

Let Ω be a convex subset of Rn. A function f : Ω ⊂ Rn → R is
convex if

f ((1− λ)p + λq) ≤ (1− λ)f (p) + λf (q)

for all p and q in Ω and 0 ≤ λ ≤ 1. f is said to be midpoint
convex if this relationship holds for λ = 1

2 .

One can prove that a function f which is midpoint convex and
continuous on Ω must be convex on Ω.
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Examples of convex functions

f (x) = ex

f (x) = e−2x

f (x , y) = x2 + y2

f (x) = |x |
f (x , y) = ‖(x , y)‖ =

√
x2 + y2
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Sequences

A sequence in Rn is a function with domain N = Z+ and with
values in Rn. In Calculus II we study sequences in R. We normally
use notation like “an” to denote the value of the sequence at n.
Examples:

f (n) = an = 1
n

g(n) = (xn, yn) =
(
2 + 3

n2
, 5 + e−n

)
h(n) = cn = sin

(
1
n

)
.
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Sequences of functions

An important topic in analysis is sequences and series of functions.
For example:

fn(x) = nx2e−nx .

For such a sequence, we would like to know if there is a function
f (x) to which fn(x) converges, and how it converges. Under what
conditions is the limit function continuous, or differentiable? Is

lim
n→∞

∫ b

a
fn(x)dx =

∫ b

a
f (x)dx?
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Definitions

A point x is said to be an interior point of a subset S of Rn if
for some (sufficiently small) r > 0, B (x , r) ⊂ S .

The interior of a set S is the set of all interior points of S .

A set S is said to be open if every point in S is an interior
point of S . Thus S is open if and only if S is equal to its
interior.
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Open balls are open!

Theorem

Every open ball B(x , r) with r > 0 and x ∈ Rn is an open set.

Proof.

To make this simple, assume x = 0. Draw a picture of the ball to
help visualize the proof.

If p ∈ B(0, r), then ‖p‖ < r .

Let δ = r − ‖p‖ > 0.

If q ∈ B(p, δ), then ‖q − p‖ < δ.

Then ‖q‖ = ‖q − p + p‖ ≤ ‖q − p‖+ ‖p‖ by the Triangle
Inequality.

‖q − p‖+ ‖p‖ < δ + ‖p‖ = r .

So if q ∈ B(p, δ), then ‖q‖ < r .
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Open balls are open!

So B(p, δ) ⊂ B(0, r).

Thus B(0, r) is open.

Corollary

Open intervals (a, b) are open subsets of R.

Proof.

Let δ = b−a
2 , c = a+b

2 . Then (a, b) = B(c , δ). Thus (a, b) is an
open ball.
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More Definitions

A point p is an exterior point of a set S , if for some (small)
r > 0, B(p, r) ∩ S = φ. This means that p is an interior point
of Sc .

A set S is said to be closed if Sc is open.

A point p is said to be a boundary point of a set S if p is
neither an interior point nor an exterior point of S . This
means that every ball B(p, r) contains at least one point of S
and at least one point of Sc .

Professor David Wagner Advanced Calculus



Functions
Topology of Rn

Theorem

A set S is closed if and only if S contains all of its boundary
points.

A set S is open if and only if S contains none of its boundary
points.

Proof.

Exercise!
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More Definitions

The set of all boundary points of a set S is called the
boundary of S . (duh!) It is denoted by bdy(S).

The closure of a set S is formed by adjoining to S all of its
boundary points. It is denoted by S . Thus

S̄ = S ∪ bdy(S).

For example, B(p, r) = {x : ‖x − p‖ ≤ r} = the closed ball
centered at p with radius r .

A set S is said to be bounded if for some M, S ⊂ B(0,M).
This has nothing to do with the boundary of S .
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Even More Definitions

A set U is a neighborhood of a point p if p is an interior point
of U.
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An example

Example

Let
A =

{
p ∈ R2 : 0 < ‖p‖ ≤ 1

}
∪ {(0, 2)} .

The boundary of A is the union of the circle ‖p‖ = 1 with the
points {(0, 0), (2, 0)}.
The interior of A is the set where 0 < ‖p‖ < 1.

The closure of A is the union of A with {(0, 0)}.
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More definitions

A point p is said to be a cluster point of a set S if every
neighborhood of p contains infinitely many points of S .

A point p is said to be an isolated point of a set S if p ∈ S
and there is a neighborhood U of p such that U ∪ S = {p}.

In our example, (0, 0) is a cluster point of A and (2, 0) is an
isolated point of A.
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Basic Theorems

1 If A and B are open sets, so are A ∪ B and A ∩ B.

2 The union of any collection of open sets is open, but the
intersection of an infinite collection of open sets need not be
open!

3 If A and B are closed sets, so are A ∪ B and A ∩ B.

4 The intersection of any collection of closed sets is closed, but
the union of an infinite collection of closed sets need not be
closed!

5 A set is open if and only if its complement is closed.

6 The interior of a set S is the largest open subset of S .

7 The closure of a set S is the smallest closed set that contains
S .
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More Basic Theorems
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