Functions Topology of Rⁿ

Advanced Calculus

Professor David Wagner

¹Department of Mathematics University of Houston

August 21

Who am I, contact info

Professor David Wagner Office 615 PGH, Phone 713-743-3460 Course web page https://www.math.uh.edu/~wagner/3334/ math_3334_fall_2019.html Start with https://www.math.uh.edu/~wagner, click on link for Teaching, then click on link for 3334.

Definition of function

Our main objects of study are functions.

Definition

Let *n* and *m* be natural numbers, and let Ω be a subset of \mathbb{R}^n . A function from Ω to \mathbb{R}^m is a rule that assigns to each $x \in \Omega$ a unique point $f(x) \in \mathbb{R}^m$.

Examples

Example

A curve in \mathbb{R}^m can be parameterized by a function $f:(a,b) \to \mathbb{R}^m$.

Example

This function maps \mathbb{R}^2 to itself: $f(x, y) = (x^2 - y^2, 2xy)$. This is the same mapping of \mathbb{R}^2 that is given in complex form as $F(z) = z^2$.

Example

We can map a region in \mathbb{R}^2 into \mathbb{R}^3 to parameterize a surface:

$$x = \phi(u, v), \ y = \psi(u, v), \ z = \theta(u, v), \ (u, v) \in \Omega.$$

A A A

Another example

Example

A mathematically perfect mountain might have an elevation function given by

$$f(x,y) = \begin{cases} 30,000 - x^2 - y^2, & x^2 + y^2 \le 30,000\\ 0, & otherwise \end{cases}$$

But perfection is in the eye of the beholder. Note that the graph of this function is also a surface.

Surfaces as level sets

As we saw last class, a surface can occur as a level set of a function on $\mathbb{R}^3.$

Example

If $f(x, y, z) = x^2 + y^2 + z^2$, what are the level sets of f?

Graph of a function

Definition

Let Ω be a subset of \mathbb{R}^n , and let f be a function from Ω to \mathbb{R}^m . The em graph of f is the set $\{(x, f(x)) : x \in \Omega\}$. It is a subset of $\Omega \times \mathbb{R}^m$ which is a subset of $\mathbb{R}^n \times \mathbb{R}^m$.

Example

For example, if f(x) = x for all $x \in \Omega$, then $f : \Omega \to \Omega$ and the graph of f is $\{(x, x) : x \in \Omega\}$.

When n + m > 3 it is difficult to visualize the graph of a function which maps $\Omega \subset \mathbb{R}^n \to \mathbb{R}^m$.

Convexity

Definition

Let Ω be a convex subset of \mathbb{R}^n . A function $f : \Omega \subset \mathbb{R}^n \to \mathbb{R}$ is *convex* if

$$f\left((1-\lambda)p+\lambda q
ight)\leq (1-\lambda)f(p)+\lambda f(q)$$

for all p and q in Ω and $0 \le \lambda \le 1$. f is said to be *midpoint* convex if this relationship holds for $\lambda = \frac{1}{2}$.

One can prove that a function f which is midpoint convex and continuous on Ω must be convex on Ω .

Examples of convex functions

• $f(x) = e^{x}$ • $f(x) = e^{-2x}$ • $f(x, y) = x^{2} + y^{2}$ • f(x) = |x|• $f(x, y) = ||(x, y)|| = \sqrt{x^{2} + y^{2}}$

э

∋⊳

A∄ ▶ ∢ ∃=

A sequence in \mathbb{R}^n is a function with domain $\mathbb{N} = \mathbb{Z}^+$ and with values in \mathbb{R}^n . In Calculus II we study sequences in \mathbb{R} . We normally use notation like " a_n " to denote the value of the sequence at n. Examples:

•
$$f(n) = a_n = \frac{1}{n}$$

• $g(n) = (x_n, y_n) = (2 + \frac{3}{n^2}, 5 + e^{-n})$
• $h(n) = c_n = \sin(\frac{1}{n}).$

Sequences of functions

An important topic in analysis is sequences and series of functions. For example:

$$f_n(x) = nx^2 e^{-nx}.$$

For such a sequence, we would like to know if there is a function f(x) to which $f_n(x)$ converges, and how it converges. Under what conditions is the limit function continuous, or differentiable? Is

$$\lim_{n\to\infty}\int_a^b f_n(x)dx = \int_a^b f(x)dx?$$

- A point x is said to be an *interior point* of a subset S of ℝⁿ if for some (sufficiently small) r > 0, B(x, r) ⊂ S.
- The *interior* of a set S is the set of all interior points of S.
- A set S is said to be *open* if every point in S is an interior point of S. Thus S is open if and only if S is equal to its interior.

Open balls are open!

Theorem

Every open ball B(x, r) with r > 0 and $x \in \mathbb{R}^n$ is an open set.

Proof.

To make this simple, assume x = 0. Draw a picture of the ball to help visualize the proof.

- If $p \in B(0, r)$, then $\|p\| < r$.
- Let $\delta = r \|p\| > 0$.
- If $q \in B(p, \delta)$, then $||q p|| < \delta$.
- Then $||q|| = ||q p + p|| \le ||q p|| + ||p||$ by the Triangle Inequality.
- $||q p|| + ||p|| < \delta + ||p|| = r.$
- So if $q \in B(p, \delta)$, then $\|q\| < r$.

Open balls are open!

- So $B(p, \delta) \subset B(0, r)$.
- Thus B(0, r) is open.

Corollary

Open intervals (a, b) are open subsets of \mathbb{R} .

Proof.

Let
$$\delta = \frac{b-a}{2}$$
, $c = \frac{a+b}{2}$. Then $(a, b) = B(c, \delta)$. Thus (a, b) is an open ball.

▲ 同 ▶ → ● 三

More Definitions

- A point p is an exterior point of a set S, if for some (small) r > 0, $B(p, r) \cap S = \phi$. This means that p is an interior point of S^c .
- A set S is said to be *closed* if S^c is open.
- A point p is said to be a *boundary point* of a set S if p is neither an interior point nor an exterior point of S. This means that every ball B(p, r) contains at least one point of S and at least one point of S^c .

Theorem

- A set S is closed if and only if S contains all of its boundary points.
- A set S is open if and only if S contains none of its boundary points.

Proof.

Exercise!

More Definitions

- The set of all boundary points of a set S is called the *boundary* of S. (duh!) It is denoted by bdy(S).
- The *closure* of a set S is formed by adjoining to S all of its boundary points. It is denoted by \overline{S} . Thus

$$\bar{S} = S \cup bdy(S).$$

- For example, B(p, r) = {x : ||x − p|| ≤ r} = the closed ball centered at p with radius r.
- A set S is said to be *bounded* if for some M, $S \subset B(0, M)$. This has nothing to do with the boundary of S.

Even More Definitions

• A set U is a *neighborhood* of a point p if p is an interior point of U.

An example

Example

Let

$${\mathcal A} = \left\{ {m p} \in {\mathbb R}^2: \,\, 0 < \| {m p} \| \le 1
ight\} \cup \left\{ (0,2)
ight\}.$$

- The boundary of A is the union of the circle ||p|| = 1 with the points $\{(0,0), (2,0)\}$.
- The interior of A is the set where $0 < \|p\| < 1$.
- The closure of A is the union of A with $\{(0,0)\}$.

- A point *p* is said to be a *cluster point* of a set *S* if every neighborhood of *p* contains infinitely many points of *S*.
- A point p is said to be an *isolated point* of a set S if p ∈ S and there is a neighborhood U of p such that U ∪ S = {p}.

In our example, (0,0) is a cluster point of A and (2,0) is an isolated point of A.

Basic Theorems

- If A and B are open sets, so are $A \cup B$ and $A \cap B$.
- The union of any collection of open sets is open, but the intersection of an infinite collection of open sets *need not be* open!
- **③** If A and B are closed sets, so are $A \cup B$ and $A \cap B$.
- The intersection of any collection of closed sets is closed, but the union of an infinite collection of closed sets *need not be closed*!
- A set is open if and only if its complement is closed.
- The interior of a set S is the largest open subset of S.
- The closure of a set S is the smallest closed set that contains S.

Functions Topology of \mathbb{R}^n

More Basic Theorems

æ

⊡ ► < ≣