Advanced Calculus

Professor David Wagner

¹Department of Mathematics University of Houston

August 26

э

Who am I, contact info

Professor David Wagner Office 615 PGH, Phone 713-743-3460 Course web page https://www.math.uh.edu/~wagner/3334/ math_3334_fall_2019.html Start with https://www.math.uh.edu/~wagner, click on link for Teaching, then click on link for 3334.

Basic Theorems

- **1** If A and B are open sets, so are $A \cup B$ and $A \cap B$.
- The union of any collection of open sets is open, but the intersection of an infinite collection of open sets *need not be* open!
- **③** If A and B are closed sets, so are $A \cup B$ and $A \cap B$.
- The intersection of any collection of closed sets is closed, but the union of an infinite collection of closed sets *need not be closed*!
- A set is open if and only if its complement is closed.
- The interior of a set S is the largest open subset of S.
- The closure of a set S is the smallest closed set that contains S.

More Basic Theorems

- The boundary of a set S is always a closed set and is the intersection of \overline{S} and $\overline{S^c}$.
- A set S is closed if and only if every cluster point for S belongs to S.
- The interior of S is obtained by deleting every point in S that is on the boundary of S.

Definitions: Connected sets

Definition

Two non-empty disjoint sets A and B are said to be *mutually separated* if neither contains a boundary point of the other. A set is *disconnected* if it is the union of separated subsets. A set is *connected* if it is not disconnected.

Examples

- B(p, r) is connected for every $p \in \mathbb{R}^n$ and every r > 0.
- In \mathbb{R}^n , let $\mathbf{0} = (0, \dots, 0)$ and let $p = (2, 0, \dots, 0)$. Then $A = B(\mathbf{0}, 1) \cup B(p, 1)$ is disconnected—because $B(\mathbf{0}, 1)$ and B(p, 1) are mutually separated.

Polygon connected sets

It is easier to work with this type of connectedness:

Definition

A set S is said to be *polygon connected* if, given any two points [and q in S, there is a chain of line segments in S which abut and form a path that starts at p and ends at q.

Example

Every convex set is polygon connected.

Sequences

- A sequence in ℝⁿ is a function from Z⁺ = {1, 2, 3, ...} to ℝⁿ. We might write f(n) = p_n = We might refer to the sequence as {p_n}.
- The *trace* of a sequence $\{p_n\}$ is the set of values of p_n . Thus, if $p_n = (-1)^n$, then the trace of $\{p_n\}$ is the set $\{1, -1\}$.
- A sequence is *bounded* if its trace is a bounded set. To put it directly, {p_n} is bounded if there is a number M such that ||p_n|| ≤ M for all n ∈ Z⁺.

Limits of sequences

Definition

A sequence $\{p_n\}$ converges to the point p if for every neighborhood U of p, there is a number N such that $p_n \in U$ whenever $n \ge N$.

To say that $\{p_n\}$ converges to p, we often write;

$$\lim_{n\to\infty}p_n=p, \text{ or simply } p_n\to p.$$

Facts about convergence

Note:

- $||p_n p||$ does not need to decrease monotonically for $p_n \rightarrow p$.
- *n* is never equal to ∞ .
- A sequence $\{p_n\}$ is said to be *convergent* if there is a point p to which it converges.
- A sequence that is not convergent is said to be *divergent*.
- Examples of divergent sequences:

$$a_n = n^2$$
, $b_n = (-1)^n n$, $c_n = 1 + (-1)^n$, $d_n = \left((-1)^n, \frac{1}{n} \right)$

Convergence and Tails

Convergence depends only on the "tail" of a sequence: If $p_n = q_n$ for $n \ge N$, and $\{q_n\}$ converges, then p_n converges (to the same limit).

Example

Let $p_n = \left(\frac{1}{n}, \frac{n-1}{n}\right) \in \mathbb{R}^2$. A little bird tells us that $p_n \to (0, 1)$. Let's prove it.

- Let U be a neighborhood of (0, 1).
- Then for some $\epsilon > 0$, $B(p, \epsilon) \subset U$.
- We need to find a condition on N so that $||p_n (0,1)|| < \epsilon$ whenever $n \ge N$.
- Calculate $||p_n (0,1)|| = \left\| \left(\frac{1}{n}, -\frac{1}{n}\right) \right\| = \sqrt{\frac{2}{n^2}}$

• =
$$\frac{\sqrt{2}}{n}$$
.

• Solve the inequality $\frac{\sqrt{2}}{n} < \epsilon$: $n > \frac{\sqrt{2}}{\epsilon}$. So if $N = \frac{\sqrt{2}}{\epsilon} + 1$, then $\|p_n - (0, 1)\| < \epsilon$ whenever $n \ge N$.

< 4 ₽ > < E

Example

Let $p_n = \left(\frac{1}{n}, \frac{n-1}{n}\right) \in \mathbb{R}^2$. A little bird tells us that $p_n \to (0, 1)$. Let's prove it.

- Let U be a neighborhood of (0, 1).
- Then for some $\epsilon > 0$, $B(p, \epsilon) \subset U$.
- We need to find a condition on N so that ||p_n − (0,1)|| < ε whenever n ≥ N.
- Calculate $||p_n (0,1)|| = \left\| \left(\frac{1}{n}, -\frac{1}{n}\right) \right\| = \sqrt{\frac{2}{n^2}}$

• =
$$\frac{\sqrt{2}}{n}$$
.

• Solve the inequality $\frac{\sqrt{2}}{n} < \epsilon$: $n > \frac{\sqrt{2}}{\epsilon}$. So if $N = \frac{\sqrt{2}}{\epsilon} + 1$, then $||p_n - (0, 1)|| < \epsilon$ whenever $n \ge N$.

< 4 P > < E

Example

Let $p_n = \left(\frac{1}{n}, \frac{n-1}{n}\right) \in \mathbb{R}^2$. A little bird tells us that $p_n \to (0, 1)$. Let's prove it.

- Let U be a neighborhood of (0, 1).
- Then for some $\epsilon > 0$, $B(p, \epsilon) \subset U$.
- We need to find a condition on N so that $||p_n (0,1)|| < \epsilon$ whenever $n \ge N$.
- Calculate $||p_n (0,1)|| = \left\| \left(\frac{1}{n}, -\frac{1}{n}\right) \right\| = \sqrt{\frac{2}{n^2}}$

• =
$$\frac{\sqrt{2}}{n}$$
.

• Solve the inequality $\frac{\sqrt{2}}{n} < \epsilon$: $n > \frac{\sqrt{2}}{\epsilon}$. So if $N = \frac{\sqrt{2}}{\epsilon} + 1$, then $\|p_n - (0, 1)\| < \epsilon$ whenever $n \ge N$.

< 4 P > < E

Example

Let $p_n = \left(\frac{1}{n}, \frac{n-1}{n}\right) \in \mathbb{R}^2$. A little bird tells us that $p_n \to (0, 1)$. Let's prove it.

- Let U be a neighborhood of (0, 1).
- Then for some $\epsilon > 0$, $B(p, \epsilon) \subset U$.
- We need to find a condition on N so that $||p_n (0,1)|| < \epsilon$ whenever $n \ge N$.
- Calculate $\|p_n (0,1)\| = \left\| \left(\frac{1}{n}, -\frac{1}{n}\right) \right\| = \sqrt{\frac{2}{n^2}}$

• =
$$\frac{\sqrt{2}}{n}$$
.

• Solve the inequality $\frac{\sqrt{2}}{n} < \epsilon$: $n > \frac{\sqrt{2}}{\epsilon}$. So if $N = \frac{\sqrt{2}}{\epsilon} + 1$, then $||p_n - (0, 1)|| < \epsilon$ whenever $n \ge N$.

< D > < A > < B >

Example

Let $p_n = \left(\frac{1}{n}, \frac{n-1}{n}\right) \in \mathbb{R}^2$. A little bird tells us that $p_n \to (0, 1)$. Let's prove it.

- Let U be a neighborhood of (0, 1).
- Then for some $\epsilon > 0$, $B(p, \epsilon) \subset U$.
- We need to find a condition on N so that $||p_n (0,1)|| < \epsilon$ whenever $n \ge N$.
- Calculate $\|p_n (0,1)\| = \left\| \left(\frac{1}{n}, -\frac{1}{n}\right) \right\| = \sqrt{\frac{2}{n^2}}$

• =
$$\frac{\sqrt{2}}{n}$$
.

• Solve the inequality $\frac{\sqrt{2}}{n} < \epsilon$: $n > \frac{\sqrt{2}}{\epsilon}$. So if $N = \frac{\sqrt{2}}{\epsilon} + 1$, then $\|p_n - (0, 1)\| < \epsilon$ whenever $n \ge N$.

< D > < A > < B >

Theorems on Convergent Sequences

- Theorem: Every convergent sequence is bounded.
- Theorem: If $p_n \to p \in \mathbb{R}^n$ and $q_n \to q \in \mathbb{R}^n$ then $p_n + q_n \to p + q$.
- Theorem: The closure of a set S in Rⁿ is the set of all limits of converging sequences of points in S.
- Corollary: Every point in the boundary of a set S ∈ ℝⁿ is simultaneously the limit of a converging sequence in S and of a converging sequence in S^c.
- Corollary: A set is closed if and only if it contains the limit of every converging sequence $\{p_n\}$ in S.

Limit points

Definition

Let $\{p_n\}$ be a sequence in \mathbb{R}^k . We say that $p \in \mathbb{R}^k$ is a *limit point* of $\{p_n\}$, if for every neighborhood U of p, there is an infinite set $A \subset \mathbb{Z}^+$ such that $p_n \in U$ for all $n \in A$.

Example

The sequence $p_n = (-1)^n$ diverges but it has two limit points in \mathbb{R} : 1 and -1. Note that $\{p_n\}$ has two subsequences, $q_n = p_{2n}$ and $r_n = p_{2n+1}$, such that $q_n \to 1$ and $r_n \to -1$.

Definition

We say that a sequence $\{q_n\}$ is a *subsequence* of a sequence $\{p_n\}$ if there is an increasing sequence of integers $n_1 < n_2 < n_3 < \cdots$ such that $q_k = p_{n_k}, \ k \in \mathbb{Z}^+$.

Advanced Calculus

Limit points and subsequences, vector limits

Theorem

A point p is a limit point of a sequence $\{p_n\}$ if and only if there is a subsequence $\{q_n\}$ of $\{p_n\}$ such that $q_n \to p$.

Theorem

Let
$$\{p_n\}$$
 be a sequence in \mathbb{R}^k with $p_n = (x_{1,n}, \ldots, x_{k,n})$. Let $p = (x_1, \ldots, x_k)$. Then $p_n \rightarrow p$ if and only if $x_{j,n} \rightarrow x_j$ for $j = 1, \ldots, k$.

Limit theorems

Theorem

If
$$a_n \to 0 \in \mathbb{R}$$
 and $\{b_n\} \in \mathbb{R}$ is bounded, then $a_n b_n \to 0$.

Corollary

If
$$a_n \rightarrow A$$
, then for any real number c , $ca_n \rightarrow cA$.

Theorem

If
$$a_n \to A \in \mathbb{R}$$
 and $b_n \to B \in \mathbb{R}$, then $a_n b_n \to AB$.

Proof.

$$a_nb_n = (a_n - A) b_n + Ab_n \rightarrow 0 + AB = AB.$$

Advanced Calculus

< 17 ▶

∃ →

문 🛌 문

More Limit theorems

Lemma

Suppose $a_n \to A \neq 0 \in \mathbb{R}$. Then there is an n_0 such that $\frac{1}{|a_n|} < \frac{2}{|A|}$ for all $n > n_0$; thus, the sequence $\left\{\frac{1}{a_n}\right\}$ is defined and bounded for all $n > n_0$.

Corollary

If
$$a_n \to A \neq 0 \in \mathbb{R}$$
, then $\frac{1}{a_n} \to \frac{1}{A}$.

Proof.

Choose n_0 as in the Lemma. Then for $n > n_0$,

$$\frac{1}{a_n} - \frac{1}{A} \bigg| = \bigg| \frac{A - a_n}{a_n A} \bigg| \le \bigg| \frac{2 \left(A - a_n \right)}{A^2} \bigg| \to 0,$$

by a previous Corollary.

Professor David Wagner

Topology of Rⁿ sequences

Yet another Limit Theorem

Theorem

If
$$a_n \to A \in \mathbb{R}$$
 and $b_n \to B \neq 0 \in \mathbb{R}$, then $\frac{a_n}{b_n} \to \frac{A}{B}$.

æ