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Basic Theorems

1 If A and B are open sets, so are A ∪ B and A ∩ B.

2 The union of any collection of open sets is open, but the
intersection of an infinite collection of open sets need not be
open!

3 If A and B are closed sets, so are A ∪ B and A ∩ B.

4 The intersection of any collection of closed sets is closed, but
the union of an infinite collection of closed sets need not be
closed!

5 A set is open if and only if its complement is closed.

6 The interior of a set S is the largest open subset of S .

7 The closure of a set S is the smallest closed set that contains
S .
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More Basic Theorems

1 The boundary of a set S is always a closed set and is the
intersection of S̄ and Sc .

2 A set S is closed if and only if every cluster point for S
belongs to S .

3 The interior of S is obtained by deleting every point in S that
is on the boundary of S .
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Definitions: Connected sets

Definition

Two non-empty disjoint sets A and B are said to be mutually
separated if neither contains a boundary point of the other. A set
is disconnected if it is the union of separated subsets. A set is
connected if it is not disconnected.

Examples

B(p, r) is connected for every p ∈ Rn and every r > 0.

In Rn, let 0 = (0, . . . , 0) and let p = (2, 0, . . . , 0). Then
A = B(0, 1) ∪ B(p, 1) is disconnected—because B(0, 1) and
B(p, 1) are mutually separated.
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Polygon connected sets

It is easier to work with this type of connectedness:

Definition

A set S is said to be polygon connected if, given any two points [
and q in S , there is a chain of line segments in S which abut and
form a path that starts at p and ends at q.

Example

Every convex set is polygon connected.
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Sequences

A sequence in Rn is a function from Z+ = {1, 2, 3, . . .} to
Rn. We might write f (n) = pn = . . .. We might refer to the
sequence as {pn}.
The trace of a sequence {pn} is the set of values of pn. Thus,
if pn = (−1)n, then the trace of {pn} is the set {1, −1}.
A sequence is bounded if its trace is a bounded set. To put it
directly, {pn} is bounded if there is a number M such that
‖pn‖ ≤ M for all n ∈ Z+.
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Limits of sequences

Definition

A sequence {pn} converges to the point p if for every neighborhood
U of p, there is a number N such that pn ∈ U whenever n ≥ N.

To say that {pn} converges to p, we often write;

lim
n→∞

pn = p, or simply pn → p.
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Facts about convergence

Note:

‖pn − p‖ does not need to decrease monotonically for pn → p.

n is never equal to ∞.

A sequence {pn} is said to be convergent if there is a point p
to which it converges.

A sequence that is not convergent is said to be divergent.

Examples of divergent sequences:

an = n2, bn = (−1)n n, cn = 1+(−1)n , dn =

(
(−1)n ,

1

n

)
.
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Convergence and Tails

Convergence depends only on the “tail” of a sequence: If pn = qn
for n ≥ N, and {qn} converges, then pn converges (to the same
limit).
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An example proof of convergence

Example

Let pn =
(
1
n ,

n−1
n

)
∈ R2. A little bird tells us that pn → (0, 1).

Let’s prove it.

Let U be a neighborhood of (0, 1).

Then for some ε > 0, B(p, ε) ⊂ U.

We need to find a condition on N so that ‖pn − (0, 1)‖ < ε
whenever n ≥ N.

Calculate ‖pn − (0, 1)‖ =
∥∥( 1

n ,−
1
n

)∥∥ =
√

2
n2

=
√
2
n .

Solve the inequality
√
2
n < ε: n >

√
2
ε . So if N =

√
2
ε + 1, then

‖pn − (0, 1)‖ < ε whenever n ≥ N.
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Theorems on Convergent Sequences

Theorem: Every convergent sequence is bounded.

Theorem: If pn → p ∈ Rn and qn → q ∈ Rn then
pn + qn → p + q.

Theorem: The closure of a set S in Rn is the set of all limits
of converging sequences of points in S .

Corollary: Every point in the boundary of a set S ∈ Rn is
simultaneously the limit of a converging sequence in S and of
a converging sequence in Sc .

Corollary: A set is closed if and only if it contains the limit of
every converging sequence {pn} in S .
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Limit points

Definition

Let {pn} be a sequence in Rk . We say that p ∈ Rk is a limit point
of {pn}, if for every neighborhood U of p, there is an infinite set
A ⊂ Z+ such that pn ∈ U for all n ∈ A.

Example

The sequence pn = (−1)n diverges but it has two limit points in R:
1 and −1. Note that {pn} has two subsequences, qn = p2n and
rn = p2n+1, such that qn → 1 and rn → −1.

Definition

We say that a sequence {qn} is a subsequence of a sequence {pn}
if there is an increasing sequence of integers n1 < n2 < n3 < · · ·
such that qk = pnk , k ∈ Z+.
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Limit points and subsequences, vector limits

Theorem

A point p is a limit point of a sequence {pn} if and only if there is
a subsequence {qn} of {pn} such that qn → p.

Theorem

Let {pn} be a sequence in Rk with pn = (x1,n, . . . , xk,n). Let
p = (x1, . . . , xk). Then pn → p if and only if xj ,n → xj for
j = 1, . . . , k .
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Limit theorems

Theorem

If an → 0 ∈ R and {bn} ∈ R is bounded, then anbn → 0.

Corollary

If an → A, then for any real number c , can → cA.

Theorem

If an → A ∈ R and bn → B ∈ R, then anbn → AB.

Proof.

anbn = (an − A) bn + Abn → 0 + AB = AB.
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More Limit theorems

Lemma

Suppose an → A 6= 0 ∈ R. Then there is an n0 such that 1
|an| <

2
|A|

for all n > n0; thus, the sequence
{

1
an

}
is defined and bounded for

all n > n0.

Corollary

If an → A 6= 0 ∈ R, then 1
an
→ 1

A .

Proof.

Choose n0 as in the Lemma. Then for n > n0,∣∣∣∣ 1

an
− 1

A

∣∣∣∣ =

∣∣∣∣A− an
anA

∣∣∣∣ ≤ ∣∣∣∣2 (A− an)

A2

∣∣∣∣→ 0,

by a previous Corollary.
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Yet another Limit Theorem

Theorem

If an → A ∈ R and bn → B 6= 0 ∈ R, then an
bn
→ A

B .
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