Advanced Calculus

Professor David Wagner

¹Department of Mathematics University of Houston

August 28

A 10

Examples

Example

$$\lim_{k\to\infty}\frac{\log k}{k}=0.$$

Given k, choose m so that $(m-1)^2 \le k < m^2$. Check that $m^2 < 2^{m-1}$ if $m \ge 7$. With m = 7 we have $6^2 \le k < 7^2$. Then for $k \ge 36$ we have (take the log of $k < m^2 < 2^{m-1}$):

$$\log k < \log \left(m^2\right) < \log \left(2^{m-1}\right) = (m-1)\log 2 \le \sqrt{k}\log 2.$$

Then

$$\frac{\log k}{k} < \frac{\log 2}{\sqrt{k}} \to 0.$$

Theorem

For b > 1 and any r,

$$\lim_{k\to\infty}\frac{k^r}{b^k}=0.$$

Proof.

Since
$$\frac{\log k}{k} \to 0$$
, there is *N* such that $\frac{\log k}{k} < \frac{\log b}{r+1}$ for $k > N$. Then $(1+r)\log k < k\log b$, or $k^{r+1} < b^k$. So $\frac{k^r}{b^k} < \frac{1}{k} \to 0$.

Corollary

If
$$0 < a < 1$$
, $a^k \rightarrow 0$.

(日)

æ

The Monotone Sequence Propwrty

Definition

A sequence $\{a_k\}$ of real numbers is *increasing* if $a_{n+1} \ge a_n$ for all $n \in \mathbb{Z}^+$, and it is *decreasing* if $a_{n+1} \le a_n$ for all $n \in \mathbb{Z}^+$. A sequence of real numbers is *monotonic* if it is either increasing or decreasing.

We will take the following statement, called *The Monotonic Sequence Propeerty* as an axiom:

Every bounded monotonic sequence of real numbers is convergent.

Examples

Example

Let $b_n = (1 + \frac{1}{n})^{n+1}$. Then $\{b_n\}$ is decreasing and bounded, so it converges (to e).

$$\frac{b_n}{b_{n+1}} = \frac{\left(1 + \frac{1}{n}\right)^{n+1}}{\left(1 + \frac{1}{n+1}\right)^{n+2}} = \left(\frac{n+1}{n}\right)^{n+1} \left(\frac{n+1}{n+2}\right)^{n+2}$$
$$= \left(\frac{n^2 + 2n + 1}{n^2 + 2n}\right)^{n+1} \left(\frac{n+1}{n+2}\right)$$
$$= \left(1 + \frac{1}{n^2 + 2n}\right)^{n+1} \left(\frac{n+1}{n+2}\right)$$

Lemma to finish

Lemma

For any integer m > 0 and any x > 0,

$$(1+x)^m > 1 + mx.$$

Proof.

By the binomial theorem, $(1+x)^m = 1 + mx + \text{positive terms} > 1 + mx$

Then

$$\left(1+\frac{1}{n^2+2n}\right)^{n+1} > 1+(n+1)\left(\frac{1}{n^2+2n}\right) = \frac{n^2+3n+1}{n^2+2n}$$

.

э

▲ 同 ▶ → ● 三

Finish

Then

$$\frac{b_n}{b_{n+1}} > \left(\frac{n^2 + 3n + 1}{n^2 + 2n}\right) \left(\frac{n+1}{n+2}\right) = \frac{n^3 + 4n^2 + 4n + 1}{n^3 + 4n^2 + 4n} > 1.$$

So $b_n > b_{n+1}$, thus $\{b_n\}$ is decreasing. Since $4 \ge b_n > 0$, $\{b_n\}$ is also bounded. Thus, by the Monotonic Sequence Property, b_n converges to some L, $0 \le L \le 4$. If $a_n = (1 + \frac{1}{n})^n = (1 + \frac{1}{n})^{-1} b_n$, a_n converges to the same limit.

Extracting square roots

Theorem

Let A and x_1 be any positive numbers. Let $x_{n+1} = \frac{1}{2} (x_n + \frac{A}{x})$, $n = 1, 2, 3, \ldots$ Then x_n converges to \sqrt{A} .

Proof.

Assume $x_1 \neq \sqrt{A}$. We show that after x_2 , the sequence is decreasing.

$$(x_2)^2 - A = rac{1}{4} \left(x_1^2 + 2A + rac{A^2}{x_1^2}
ight) - A$$

= $rac{1}{4} \left(x_1^2 - 2A + rac{A^2}{x_1^2}
ight) = rac{1}{4} \left(x_1 - rac{A}{x_1}
ight) > 0$

So for any non-zero choice of x_1 , $x_2 > \sqrt{A}$.

More extraction

Similarly, $x_n > \sqrt{A}$ for all $n \ge 2$. The sequence is decreasing because

$$x_n - x_{n+1} = x_n - \frac{1}{2}\left(x_n + \frac{A}{x_n}\right) = \frac{1}{2}\left(x_n - \frac{A}{x_n}\right) = \frac{x_n^2 - A}{2x_n} > 0.$$

Since

$$x_{n+1} - \sqrt{A} = \frac{1}{2} \left(x_n + \frac{A}{x_n} \right) - \sqrt{A} = \frac{\left(x_n - \sqrt{A} \right)^2}{2x_n}$$
$$< \frac{\left(x_n - \sqrt{A} \right)^2}{2\sqrt{A}},$$

the convergence is rapid.

Cauchy Sequences

Definition

A sequence $\{p_n\}$ is said to be a *Cauchy Sequence* if, for any $\epsilon > 0$, there is a number N such that $||p_n - p_m|| < \epsilon$ whenever both n and m are larger than N.

A Cauchy sequence is a sequence that looks as though it ought to converge. The main question about convergence is the existence of a point p to which p_n converges. The Monotone Convergence Property of the real numbers can be shown to imply that all Cauchy Sequences in \mathbb{R}^n converge.

Example

Let

$$x_n = \int_1^n \frac{\cos t}{t^2} dt.$$

This is a Cauchy Sequence:

$$|x_n - x_m| = \left| \int_m^n \frac{\cos t}{t^2} dt \right| \le \int_m^n \frac{1}{t^2} dt = \left| \frac{1}{m} - \frac{1}{n} \right|$$

æ

The Monotone Convergence Property also implies the Least Upper Bound property:

If S is a set of real numbers which is bounded above, then there is a real number x which is the least upper bound of S.

Nested Closed Interval Theorem

The next theorem is very useful:

Theorem

Let $\{I_n\}$ be a sequence of non-empty bounded closed intervals in \mathbb{R} with $I_{n+1} \subset I_n$. Then $\bigcap_{n=1}^{\infty} I_n \neq \phi$, i.e., there is at least one number $x \in \mathbb{R}$ such that $x \in I_n$ for every $n \in \mathbb{Z}^+$.

Proof.

Let $I_n = [a_n, b_n]$. Since $I_{n+1} \subset I_n$, $a_n \leq a_{n+1}$ and $b_{n+1} \leq b_n$. Thus, the Monotone Convergence Property implies that there are real numbers a and b such that $a_n \rightarrow a$ and $b_n \rightarrow b$. We have $a = lub(a_n)$ and $b = glb(b_n)$. Since $b_n \geq a_m$ for all $n, m, b_n \geq a$, and finally $b \geq a$. Then [a, b] is non-empty and a subset of every I_n .

Bolzano-Weierstrass

Theorem (Bolzano-Weierstrass)

Every bounded infinite set of real numbers has a cluster point.

Proof.

Let *S* be an infinite subset of the interval $[a_1, b_1]$. Since $[a_1, b_1] = \left[a_1, \frac{a_1+b_1}{2}\right] \cup \left[\frac{a_1+b_1}{2}, b_1\right]$, at least one of these halves must contain infinitely many points of *S*. Define $a_2 < b_2$ so that $[a_2, b_2]$ is such a half. Continue in this fashion to construct a nested sequence of bounded closed intervals I_n , each of which contains infinitely many points of *S*, and with $b_n - a_n \rightarrow 0$. By the previous theorem, $\bigcap_{n=1}^{\infty} I_n$ is non empty with zero width, so it contains a single point, which must be a cluster point of *S*.

More on Sequences Compact Sets

Bounded sequence theorem

Theorem

Every bounded sequence of real numbers has a limit point, and therefore has a converging subsequence.

Cauchy Sequences Converge

Theorem

Any Cauchy sequence of real numbers is convergent.

Proof.

Let $\{x_n\}$ be a Cauchy sequence of real numbers. Then it must be bounded. Let $\alpha = \liminf x_n$ and let $\beta = \limsup x_n$. Let $\epsilon > 0$ be given. Since x_n is Cauchy, there is N such that for n, m > N, $|x_n - x_m| < \frac{\epsilon}{3}$. There are numbers $n_1, m_1 > N$ such that $|x_{n_1} - \alpha| < \frac{\epsilon}{3}$ and $|\beta - x_{m_1}| < \frac{\epsilon}{3}$. Then

$$|\beta - \alpha| \le |\beta - x_{m_1}| + |x_{m_1} - x_{n_1}| + |x_{n_1} - \alpha| < \epsilon.$$

Since this is true for all $\epsilon > 0$, $\alpha = \beta$. As a consequence, $x_n \rightarrow \alpha$.

・ロト ・同ト ・ヨト ・ヨト

More on Sequences Compact Sets

Cauchy Sequences Converge in \mathbb{R}^n

Corollary

Any Cauchy sequence in \mathbb{R}^n converges.

Proof.

If $p_k = (x_{1k}, \ldots, x_{nk})$, $k \in \mathbb{Z}^+$ is a Cauchy sequence in \mathbb{R}^n , then each x_{jk} , $k \in \mathbb{Z}^+$ is a Cauchy sequence in \mathbb{R} . Hence each $x_{jk} \to x_j$. Then $p_k \to (x_1, \ldots, x_n)$. (Exercise 35, Section 1.6). Many proofs that a problem has a solution proceed as follow:

- Construct a sequence of approximate solutions.
- Show that the constructed sequence lies in a *compact* subset of some space (which usually has infinite dimension).
- Compactness guarantees that a subsequence must converge to a limit.
- Show that the kind of convergence is good enough to ensure that the limit actually solves the problem.

Definition

A collection S of open sets \mathcal{O}_{α} is said to be an open covering of the set K if $K \subset \bigcup_{\alpha} \mathcal{O}_{\alpha}$. The covering is said to be a finite covering if S consists of only a finite number of open sets.

Definition

A set K is called *compact* if every open covering of K can be reduced to a finite covering. This means that the must exist a finite sub-collection S_0 of the original open sets which is still a covering of K.