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Examples

Example

lim
k→∞

log k

k
= 0.

Given k, choose m so that (m − 1)2 ≤ k < m2. Check that
m2 < 2m−1 if m ≥ 7. With m = 7 we have 62 ≤ k < 72. Then for
k ≥ 36 we have (take the log of k < m2 < 2m−1):

log k < log
(
m2
)
< log

(
2m−1

)
= (m − 1) log 2 ≤

√
k log 2.

Then
log k

k
<

log 2√
k
→ 0.
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Theorem

For b > 1 and any r ,

lim
k→∞

k r

bk
= 0.

Proof.

Since log k
k → 0, there is N such that log k

k < log b
r+1 for k > N. Then

(1 + r) log k < k log b, or k r+1 < bk . So k r

bk
< 1

k → 0.

Corollary

If 0 < a < 1, ak → 0.
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The Monotone Sequence Propwrty

Definition

A sequence {ak} of real numbers is increasing if an+1 ≥ an for all
n ∈ Z+, and it is decreasing if an+1 ≤ an for all n ∈ Z+. A
sequence of real numbers is monotonic if it is either increasing or
decreasing.

We will take the following statement, called The Monotonic
Sequence Propeerty as an axiom:

Every bounded monotonic sequence of real numbers is
convergent.
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Examples

Example

Let bn =
(
1 + 1

n

)n+1
. Then {bn} is decreasing and bounded, so it

converges (to e).

bn

bn+1
=

(
1 + 1

n

)n+1(
1 + 1

n+1

)n+2
=

(
n + 1

n

)n+1(n + 1

n + 2

)n+2

=

(
n2 + 2n + 1

n2 + 2n

)n+1(
n + 1

n + 2

)
=

(
1 +

1

n2 + 2n

)n+1(n + 1

n + 2

)
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Lemma to finish

Lemma

For any integer m > 0 and any x > 0,

(1 + x)m > 1 + mx .

Proof.

By the binomial theorem,
(1 + x)m = 1 + mx + positive terms > 1 + mx

Then(
1 +

1

n2 + 2n

)n+1

> 1 + (n + 1)

(
1

n2 + 2n

)
=

n2 + 3n + 1

n2 + 2n
.
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Finish

Then

bn

bn+1
>

(
n2 + 3n + 1

n2 + 2n

)(
n + 1

n + 2

)
=

n3 + 4n2 + 4n + 1

n3 + 4n2 + 4n
> 1.

So bn > bn+1, thus {bn} is decreasing. Since 4 ≥ bn > 0, {bn} is
also bounded. Thus, by the Monotonic Sequence Property, bn

converges to some L, 0 ≤ L ≤ 4. If an =
(
1 + 1

n

)n
=
(
1 + 1

n

)−1
bn,

an converges to the same limit.
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Extracting square roots

Theorem

Let A and x1 be any positive numbers. Let xn+1 = 1
2

(
xn + A

x

)
,

n = 1, 2, 3, . . .. Then xn converges to
√

A.

Proof.

Assume x1 6=
√

A. We show that after x2, the sequence is
decreasing.

(x2)2 − A =
1

4

(
x2
1 + 2A +

A2

x2
1

)
− A

=
1

4

(
x2
1 − 2A +

A2

x2
1

)
=

1

4

(
x1 −

A

x1

)
> 0.

So for any non-zero choice of x1, x2 >
√

A.
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More extraction

Similarly, xn >
√

A for all n ≥ 2. The sequence is decreasing
because

xn − xn+1 = xn −
1

2

(
xn +

A

xn

)
=

1

2

(
xn −

A

xn

)
=

x2
n − A

2xn
> 0.

Since

xn+1 −
√

A =
1

2

(
xn +

A

xn

)
−
√

A =

(
xn −

√
A
)2

2xn

<

(
xn −

√
A
)2

2
√

A
,

the convergence is rapid.
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Cauchy Sequences

Definition

A sequence {pn} is said to be a Cauchy Sequence if, for any ε > 0,
there is a number N such that ‖pn − pm‖ < ε whenever both n
and m are larger than N.

A Cauchy sequence is a sequence that looks as though it ought to
converge. The main question about convergence is the existence of
a point p to which pn converges. The Monotone Convergence
Property of the real numbers can be shown to imply that all
Cauchy Sequences in Rn converge.
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Example

Let

xn =

∫ n

1

cos t

t2
dt.

This is a Cauchy Sequence:

|xn − xm| =

∣∣∣∣∫ n

m

cos t

t2
dt

∣∣∣∣ ≤ ∫ n

m

1

t2
dt =

∣∣∣∣ 1

m
− 1

n

∣∣∣∣ .
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The Monotone Convergence Property also implies the Least Upper
Bound property:

If S is a set of real numbers which is bounded above,
then there is a real number x which is the least upper
bound of S.
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Nested Closed Interval Theorem

The next theorem is very useful:

Theorem

Let {In} be a sequence of non-empty bounded closed intervals in R
with In+1 ⊂ In. Then ∩∞n=1In 6= φ, i.e., there is at least one number
x ∈ R such that x ∈ In for every n ∈ Z+.

Proof.

Let In = [an, bn]. Since In+1 ⊂ In, an ≤ an+1 and bn+1 ≤ bn. Thus,
the Monotone Convergence Property implies that there are real
numbers a and b such that an → a and bn → b. We have
a = lub (an) and b = glb (bn). Since bn ≥ am for all n,m, bn ≥ a,
and finally b ≥ a. Then [a, b] is non-empty and a subset of every
In.
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Bolzano-Weierstrass

Theorem (Bolzano-Weierstrass)

Every bounded infinite set of real numbers has a cluster point.

Proof.

Let S be an infinite subset of the interval [a1, b1]. Since

[a1, b1] =
[
a1,

a1+b1
2

]
∪
[
a1+b1

2 , b1

]
, at least one of these halves

must contain infinitely many points of S . Define a2 < b2 so that
[a2, b2] is such a half. Continue in this fashion to construct a
nested sequence of bounded closed intervals In, each of which
contains infinitely many points of S , and with bn − an → 0. By the
previous theorem, ∩∞n=1In is non empty with zero width, so it
contains a single point, which must be a cluster point of S .
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Bounded sequence theorem

Theorem

Every bounded sequence of real numbers has a limit point, and
therefore has a converging subsequence.
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Cauchy Sequences Converge

Theorem

Any Cauchy sequence of real numbers is convergent.

Proof.

Let {xn} be a Cauchy sequence of real numbers. Then it must be
bounded. Let α = lim inf xn and let β = lim sup xn. Let ε > 0 be
given. Since xn is Cauchy, there is N such that for n, m > N,
|xn − xm| < ε

3 . There are numbers n1, m1 > N such that
|xn1 − α| < ε

3 and |β − xm1 | < ε
3 . Then

|β − α| ≤ |β − xm1 |+ |xm1 − xn1 |+ |xn1 − α| < ε.

Since this is true for all ε > 0, α = β. As a consequence,
xn → α.
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Cauchy Sequences Converge in Rn

Corollary

Any Cauchy sequence in Rn converges.

Proof.

If pk = (x1k , . . . , xnk), k ∈ Z+ is a Cauchy sequence in Rn, then
each xjk , k ∈ Z+ is a Cauchy sequence in R. Hence each xjk → xj
Then pk → (x1, . . . , xn). (Exercise 35, Section 1.6).
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Many proofs that a problem has a solution proceed as follow:

1 Construct a sequence of approximate solutions.

2 Show that the constructed sequence lies in a compact subset
of some space (which usually has infinite dimension).

3 Compactness guarantees that a subsequence must converge to
a limit.

4 Show that the kind of convergence is good enough to ensure
that the limit actually solves the problem.
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Definition

A collection S of open sets Oα is said to be an open covering of
the set K if K ⊂ ∪αOα. The covering is said to be a finite
covering if S consists of only a finite number of open sets.

Definition

A set K is called compact if every open covering of K can be
reduced to a finite covering. This means that the must exist a
finite sub-collection S0 of the original open sets which is still a
covering of K .
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