Advanced Calculus

Professor David Wagner

¹Department of Mathematics University of Houston

September 4

A 10

Recall from last lecture:

Definition

A collection S of open sets \mathcal{O}_{α} is said to be an open covering of the set K if $K \subset \bigcup_{\alpha} \mathcal{O}_{\alpha}$. The covering is said to be a finite covering if S consists of only a finite number of open sets.

Definition

A set K is called *compact* if every open covering of K can be reduced to a finite covering. This means that the must exist a finite sub-collection S_0 of the original open sets which is still a covering of K.

Theorem

The interval [a, b] is compact.

- Suppose S is an open covering of [a, b].
- If $x \in [a, b]$ then S also covers [a, x].
- Let x be the *l.u.b.* of
 A = {y : [a, y] has a finite subcover from S}.
- Since $a \in A$, A is not empty.
- Since $x \in [a, b]$, there is an open set $\mathcal{O} \in \mathcal{S}$ such that $x \in \mathcal{O}$.
- Since \mathcal{O} is open, there is $\epsilon > 0$ such that $(x \epsilon, x + \epsilon) \subset \mathcal{O}$.

Compact Sets

- Since x = l.u.b.(A), there is $y \in A \cap (x \epsilon, x)$.
- Then there is a finite subcover from S of [a, y]: { U_1, \dots, U_k }.
- Then $\{U_1, \dots, U_k, \mathcal{O}\}$ is a finite subcover of [a, x] from \mathcal{S} .
- Thus, $x \in A$.
- If x < b, then there is $z \in (x, b) \cap (x.x + \epsilon)$.
- Then $[a, z] \subset U_1 \cup \cdots \cup U_k \cup \mathcal{O}$.
- Thus, $x < b \implies x \neq l.u.b.(A)$. Since x = l.u.b.(A), x = b.
- Thus $b \in A$, so [a, b] has a finite subcover from S.
- So [*a*, *b*] is compact.

Theorems about compact sets

Theorem (Heine-Borel)

The compact sets in \mathbb{R}^n are exactly those that are closed and bounded.

Do exercises 1 and 2 on page 69 to show that every compact set in \mathbb{R}^n . To prove the converse:

Lemma (Spivak, Calculus on Manifolds p. 8)

If B is a compact subset of \mathbb{R}^m , $x \in \mathbb{R}^n$, and \mathcal{O} is an open covering of $\{x\} \times B$, then there is an open set $U \subset \mathbb{R}^n$ such that $U \times B$ is covered by a finite number of sets in \mathcal{O} . Proof of Lemma:

- Clearly $\{x\} \times B$ is compact.
- So there is a finite subcover of {x} × B from O, which we will still label O.
- Then we need only show that there is an open *U* such that $U \times B$ is covered by \mathcal{O} .
- For each $y \in B$ there is $W \in \mathcal{O}$ such that $(x, y) \in W$.
- Since W is open, there are open sets $U_y \subset \mathbb{R}^n$ and $V_y \subset \mathbb{R}^m$ such that $(x, y) \in U_y \times V_y \subset W$.
- The sets V_y cover B which is compact, so a finite number V_{y1}, \dots, V_{yk} also cover B.
- Let $U = U_{y1} \cap \cdots \cap U_{yk}$.
- If $(x',y') \in U \times B$, then $y' \in V_{yi}$ for some i, and $x' \in U_{yi}$.
- So $(x', y') \in U_{yi} \times V_{yi}$ which is a subset of some $W \in \mathcal{O}$.

Theorem

If A is a compact subset of \mathbb{R}^n and B is a compact subset of \mathbb{R}^m , then $A \times B$ is a compact subset of \mathbb{R}^{n+m} .

Proof:

- If \mathcal{O} is an open cover of $A \times B$, then for each $x \in A$, \mathcal{O} covers $\{x\} \times B$.
- By the Lemma, there is an open set $U_x \subset \mathbb{R}^n$ such that $U_x \times B$ has an open subcover from \mathcal{O} .
- Since A is compact, A is covered by a finite set $\{U_{x1}, \cdots, U_{xk}\}$.
- Since U_{xi} is covered by a finite subset of \mathcal{O} , $A \times B$ is covered by a finite union of finite subsets of \mathcal{O} .
- Thus, $A \times B$ is compact.

Corollary

Any closed and bounded rectangle $[a_1, b_1] \times \cdots \times [a_n, b_n]$ is compact.

Theorem

Any closed subset of a compact set is compact.

Corollary (Heine-Borel)

Every closed and bounded subset of \mathbb{R}^n is compact.

More theorems about compact sets

Theorem (Bolzano-Weierstrass #1)

Any bounded infinite set in \mathbb{R}^n has a cluster point.

- Let C be a bounded infinite subset of \mathbb{R}^n .
- Then $D = \overline{C}$ is closed and bounded, hence by Heine-Borel, D is compact.
- If C has no cluster point, then every point in D has an open neighborhood which contains only finitely many points of C.
- The collection of these open sets covers *D*, which is compact. So *D* is covered by a finite subset of this collection. But then *C* is a finite union of finite sets.
- Thus, ((C is bounded) \implies ((C has no cluster point) \implies (C is finite)).
- This is the contrapositive of (C is bounded) ⇒ ((C is infinite) ⇒ (C has a cluster point))

Compact Sets

More theorems about compact sets

Theorem (Bolzano-Weierstrass #2)

Any bounded sequence in \mathbb{R}^n has a limit point, and thus has a converging subsequence.

More theorems about compact sets

Theorem

If $C_1 \supset C_2 \supset C_3 \supset \cdots$ is a nested sequence of nonempty compact sets, then their intersection $\bigcap_{n=1}^{\infty} C_n$ is nonempty.

- Suppose $\cap_{n=1}^{\infty} C_n = \phi$. Then $\cup_{n=1}^{\infty} C_n^c \supset C_1$.
- Since C₁ is compact, and each C^c_n is open, a finite subcollection C^C_{n1}, · · · , C^c_{nk} covers C₁.
- Then $\bigcap_{j=1}^k C_{n_i} = C_{n_k} = \phi$.
- Thus C_n compact and $C_{n+1} \subset C_n \implies$ $((C_n \neq \phi) \implies (\cap_{n=1}^{\infty} C_n \neq \phi))$

Theorem

If S is any bounded subset of \mathbb{R}^n , and $\delta > 0$ is given, then it is possible to choose a finite set of points p_1, \dots, p_m in S so that any $p \in S$ is within distance δ of p_j for some j.

- S is covered by $\{B(p, \delta) : p \in S\}$.
- This collection also covers \overline{S} , which is compact.
- Then some finite subset $\{B(p_i, \delta) : i = 1, \dots, m\}$ covers \overline{S} .
- Then every $p \in S$ is within distance δ of some p_i .