Advanced Calculus

Professor David Wagner

¹Department of Mathematics University of Houston

September 9

Definition

Let $D \subset \mathbb{R}^n$. A function $f : D \to \mathbb{R}^m$ is said to be *sequentially* continuous at $p_0 \in D$ if, whenever $\{p_n\}$ is a sequence in D with $\lim_{n\to\infty} p_n = p_0$, then $\lim_{n\to\infty} f(p_n) = f(p_0)$. We say that $f : D \to \mathbb{R}^m$ is sequentially continuous on D, if for every $p \in D$, fis sequentially continuous at p.

Theorem

A function f is continuous at $p \in D$ if and only if f is sequentially continuous at p.

 $\mathsf{Proof:} \implies$

- Suppose f is continuous at p. Let {p_n} be a sequence in D with lim_{n→∞} p_n = p.
- Let $\epsilon > 0$ be given. Since f is continuous at p there is $\delta > 0$ such that $x \in B(p, \delta) \cap D \implies ||f(x) - f(p)|| < \epsilon$.
- Since $\{p_n\} \to p$ there is $N \in \mathbb{R}$ such that $||p_n p|| < \delta$ for n > N. Also, $p_n \in D$.
- Then for n > N, $||f(p_n) p|| < \epsilon$.
- Thus, f is sequentially continuous at p.

Proof: $\Leftarrow=$

• Suppose f is not continuous at p. Then for some $\epsilon > 0$ and for each $n \in \mathbb{Z}^+$, there is $p_n \in D$ such that $||p_n - p|| < \frac{1}{n}$ and $||f(p_n) - f(p)|| \ge \epsilon$.

• Thus,
$$p_n \rightarrow p$$
 but $f(p_n) \not\rightarrow f(p)$.

- So, if f is not continuous at p, then f is not sequentially continuous at p.
- This is the contrapositive of the statement: *If f is sequentially continuous at p, then f is continuous at p.*

Example

Let

$$f(x,y) = \begin{cases} \frac{xy^2}{x^2 + y^4}, & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

Then if
$$p_n = \left(\frac{1}{n}, \frac{c}{n}\right)$$
,

$$\lim_{n \to \infty} f(p_n) = f\left(\frac{1}{n}, \frac{c}{n}\right) = \lim_{n \to \infty} \frac{\frac{c^2}{n^3}}{\frac{1}{n^2} + \frac{c^4}{n^4}}$$
(1)
= $\lim_{n \to \infty} \frac{\frac{c^2}{n}}{1 + \frac{c^4}{n^2}} = 0.$ (2)

Continuous functions

Sequential Continuity

Example (Continued)

But if
$$q_n = \left(\frac{1}{n^2}, \frac{1}{n}\right)$$
,
$$\lim_{n \to \infty} f\left(\frac{1}{n^2}, \frac{1}{n}\right) = \lim_{n \to \infty} \frac{\frac{1}{n^4}}{\frac{1}{n^4} + \frac{1}{n^4}} = \frac{1}{2}$$

So f is not continuous at (0, 0).

Relative Topology

Definition

Let D be a subset of \mathbb{R}^n . We say that a subset S of D is open relative to D if there is an open subset U of \mathbb{R}^n such that $S = U \cap D$. S is closed relative to D if there is a closed subset C of \mathbb{R}^n such that $S = C \cap D$. The collection of subsets of D which are open relative to D is called the *relative topology* or *subspace topology* on D.

The algebra C(D)

Theorem

Let C(D) denote the set of all continuous functions on D with real values. Then C(D) is closed under addition, scalar multiplication, and multiplication (fg)(x) = f(x)g(x).

Remark

An *algebra* is a vector space that is closed under multiplication of vectors.

- Let f and g be elements of C(D). Then for any p ∈ D, and any sequence p_n → p, we have f (p_n) → f(p) and g (p_n) → g(p).
- Then by standard results on real sequences, $f(p_n) + g(p_n) \rightarrow f(p) + g(p), \ \alpha f(p_n) \rightarrow \alpha f(p)$, and $f(p_n) g(p_n) \rightarrow f(p)g(p)$.
- Thus, f + g, αf , and fg are in C(D).

Similarly, one can show that if f and g are continuous on D, then $\frac{f}{g}$ is continuous at all $p \in D$ for which $g(p) \neq 0$.

- It is easy to show that constant functions and co-ordinate functions x₁, · · · , x_n on ℝⁿ are continuous.
- Then, by the previous theorem, all polynomial functions are continuous on \mathbb{R}^n , and
- all rational functions $\frac{p(x_1, \dots, x_n)}{q(x_1, \dots, x_n)}$ where p and q are polynomials, are continuous at all points (x_1, \dots, x_n) for which $q(x_1, \dots, x_n) \neq 0$.

Function Composition

Theorem

Let the function g be continuous on a set $D \subset \mathbb{R}^n$ with values in $S \subset \mathbb{R}^m$. Let the function f be continuous on S with values in \mathbb{R}^k . Then the composite function F, given by

F(p) = f(g(p))

is continuous on D.

- Let U be open in \mathbb{R}^k . Since f is continuous on S, $f^{-1}(U)$ is open relative to S.
- Since g is continuous on D with values in S, $g^{-1}(f^{-1}(U))$ is open relative to D.
- Thus, $F^{-1}(U) = g^{-1}(f^{-1}(U))$ is relatively open in D.
- So $F = f \circ g$ is continuous on D.

Let A(x, y) = x + y and M(x, y) = xy. If we prove the continuity of A and F, then for f and g in C(D), then

- The vector function F(p) = (f,g)(p) = (f(p),g(p)) is continuous on D,
- 2 Then $A \circ F(p) = f(p) + g(p)$ is continuous on D, and
- $M \circ F(p) = f(p)g(p)$ is continuous on D.

Trig functions

What, exactly, are the functions sin(x) and cos(x)? We could define them as follows:

Definition

The function cos(x) is the unique solution to the Initial Value Problem:

$$f''(x) + f(x) = 0, \quad f(0) = 1, \quad f'(0) = 0,$$

and the function sin(x) is the unique solution to:

$$f''(x) + f(x) = 0, \quad f(0) = 0, \quad f'(0) = 1,$$

Intermediate Value Theorem

Theorem

Let S be a connected set, and let $f : S \to \mathbb{R}^m$. Then f(S) is connected.

Corollary (Intermediate Value Theorem)

Let $f : [a, b] \to \mathbb{R}$ and suppose f(a)f(b) < 0. Then there is $c \in (a, b)$ such that f(c) = 0.

Corollary (IVT Version 2)

Let $f : [a, b] \to \mathbb{R}$ and suppose f(a) < d < f(b). Then there is $c \in (a, b)$ such that f(c) = d

Proof of Theorem

- We show that if f is continuous on S, and f(S) is not connected, then S is not connected.
- If f(S) is not connected, then $f(S) = A \cup B$, where A and B are mutually separated.
- This means that neither A nor B contains a boundary point of the other.
- Then both A and B are relatively open in f(S)-that is, there are open subsets U and V of \mathbb{R}^m such that $A = U \cap f(S)$ and $B = V \cap f(S)$.
- Then S = f⁻¹(A) ∪ f⁻¹(B), and since f is continuous on S, f⁻¹(A) and f⁻¹(B) are relatively open in S, hence they are mutually separated.
- Thus, if f(S) is disconnected, then S is disconnected. This is equivalent to the statement: If f is continuous on S and S is connected, then f(S) is connected.