Advanced Calculus

Professor David Wagner

${ }^{1}$ Department of Mathematics
University of Houston

September 9

Sequential Continuity

Definition

Let $D \subset \mathbb{R}^{n}$. A function $f: D \rightarrow \mathbb{R}^{m}$ is said to be sequentially continuous at $p_{0} \in D$ if, whenever $\left\{p_{n}\right\}$ is a sequence in D with $\lim _{n \rightarrow \infty} p_{n}=p_{0}$, then $\lim _{n \rightarrow \infty} f\left(p_{n}\right)=f\left(p_{0}\right)$. We say that $f: D \rightarrow \mathbb{R}^{m}$ is sequentially continuous on D, if for every $p \in D, f$ is sequentially continuous at p.

Theorem

A function f is continuous at $p \in D$ if and only if f is sequentially continuous at p.

Sequential Continuity

Proof: \Longrightarrow

- Suppose f is continuous at p. Let $\left\{p_{n}\right\}$ be a sequence in D with $\lim _{n \rightarrow \infty} p_{n}=p$.
- Let $\epsilon>0$ be given. Since f is continuous at p there is $\delta>0$ such that $x \in B(p, \delta) \cap D \Longrightarrow\|f(x)-f(p)\|<\epsilon$.
- Since $\left\{p_{n}\right\} \rightarrow p$ there is $N \in \mathbb{R}$ such that $\left\|p_{n}-p\right\|<\delta$ for $n>N$. Also, $p_{n} \in D$.
- Then for $n>N,\left\|f\left(p_{n}\right)-p\right\|<\epsilon$.
- Thus, f is sequentially continuous at p.

Sequential Continuity

Proof: \Longleftarrow

- Suppose f is not continuous at p. Then for some $\epsilon>0$ and for each $n \in \mathbb{Z}^{+}$, there is $p_{n} \in D$ such that $\left\|p_{n}-p\right\|<\frac{1}{n}$ and $\left\|f\left(p_{n}\right)-f(p)\right\| \geq \epsilon$.
- Thus, $p_{n} \rightarrow p$ but $f\left(p_{n}\right) \nrightarrow f(p)$.
- So, if f is not continuous at p, then f is not sequentially continuous at p.
- This is the contrapositive of the statement: If f is sequentially continuous at p, then f is continuous at p.

Sequential Continuity

Example

Let

$$
f(x, y)= \begin{cases}\frac{x y^{2}}{x^{2}+y^{4}}, & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{cases}
$$

Then if $p_{n}=\left(\frac{1}{n}, \frac{c}{n}\right)$,

$$
\begin{align*}
\lim _{n \rightarrow \infty} f\left(p_{n}\right)=f\left(\frac{1}{n}, \frac{c}{n}\right) & =\lim _{n \rightarrow \infty} \frac{\frac{c^{2}}{n^{3}}}{\frac{1}{n^{2}}+\frac{c^{4}}{n^{4}}} \tag{1}\\
& =\lim _{n \rightarrow \infty} \frac{\frac{c^{2}}{n}}{1+\frac{c^{4}}{n^{2}}}=0 \tag{2}
\end{align*}
$$

Sequential Continuity

Example (Continued)

But if $q_{n}=\left(\frac{1}{n^{2}}, \frac{1}{n}\right)$,

$$
\lim _{n \rightarrow \infty} f\left(\frac{1}{n^{2}}, \frac{1}{n}\right)=\lim _{n \rightarrow \infty} \frac{\frac{1}{n^{4}}}{\frac{1}{n^{4}}+\frac{1}{n^{4}}}=\frac{1}{2}
$$

So f is not continuous at $(0,0)$.

Relative Topology

Definition

Let D be a subset of \mathbb{R}^{n}. We say that a subset S of D is open relative to D if there is an open subset U of \mathbb{R}^{n} such that $S=U \cap D . S$ is closed relative to D if there is a closed subset C of \mathbb{R}^{n} such that $S=C \cap D$. The collection of subsets of D which are open relative to D is called the relative topology or subspace topology on D.

The algebra $C(D)$

Theorem

Let $C(D)$ denote the set of all continuous functions on D with real values. Then $C(D)$ is closed under addition, scalar multiplication, and multiplication $(f g)(x)=f(x) g(x)$.

Remark

An algebra is a vector space that is closed under multiplication of vectors.

Proof

- Let f and g be elements of $C(D)$. Then for any $p \in D$, and any sequence $p_{n} \rightarrow p$, we have $f\left(p_{n}\right) \rightarrow f(p)$ and $g\left(p_{n}\right) \rightarrow g(p)$.
- Then by standard results on real sequences,

$$
\begin{aligned}
& f\left(p_{n}\right)+g\left(p_{n}\right) \rightarrow f(p)+g(p), \alpha f\left(p_{n}\right) \rightarrow \alpha f(p), \text { and } \\
& f\left(p_{n}\right) g\left(p_{n}\right) \rightarrow f(p) g(p) .
\end{aligned}
$$

- Thus, $f+g, \alpha f$, and $f g$ are in $C(D)$.

Similarly, one can show that if f and g are continuous on D, then $\frac{f}{g}$ is continuous at all $p \in D$ for which $g(p) \neq 0$.

- It is easy to show that constant functions and co-ordinate functions x_{1}, \cdots, x_{n} on \mathbb{R}^{n} are continuous.
- Then, by the previous theorem, all polynomial functions are continuous on \mathbb{R}^{n}, and
- all rational functions $\frac{p\left(x_{1}, \cdots, x_{n}\right)}{q\left(x_{1}, \cdots, x_{n}\right)}$ where p and q are polynomials, are continuous at all points $\left(x_{1}, \cdots, x_{n}\right)$ for which $q\left(x_{1}, \cdots, x_{n}\right) \neq 0$.

Function Composition

Theorem

Let the function g be continuous on a set $D \subset \mathbb{R}^{n}$ with values in $S \subset \mathbb{R}^{m}$. Let the function f be continuous on S with values in \mathbb{R}^{k}. Then the composite function F, given by

$$
F(p)=f(g(p))
$$

is continuous on D.

Proof

- Let U be open in \mathbb{R}^{k}. Since f is continuous on $S, f^{-1}(U)$ is open relative to S.
- Since g is continuous on D with values in $S, g^{-1}\left(f^{-1}(U)\right)$ is open relative to D.
- Thus, $F^{-1}(U)=g^{-1}\left(f^{-1}(U)\right)$ is relatively open in D.
- So $F=f \circ g$ is continuous on D.

Examples

Let $A(x, y)=x+y$ and $M(x, y)=x y$. If we prove the continuity of A and F, then for f and g in $C(D)$, then
(1) The vector function $F(p)=(f, g)(p)=(f(p), g(p))$ is continuous on D,
(2) Then $A \circ F(p)=f(p)+g(p)$ is continuous on D, and
(3) $M \circ F(p)=f(p) g(p)$ is continuous on D.

Trig functions

What, exactly, are the functions $\sin (x)$ and $\cos (x)$? We could define them as follows:

Definition

The function $\cos (x)$ is the unique solution to the Initial Value Problem:

$$
f^{\prime \prime}(x)+f(x)=0, \quad f(0)=1, \quad f^{\prime}(0)=0
$$

and the function $\sin (x)$ is the unique solution to:

$$
f^{\prime \prime}(x)+f(x)=0, \quad f(0)=0, \quad f^{\prime}(0)=1
$$

Intermediate Value Theorem

Theorem

Let S be a connected set, and let $f: S \rightarrow \mathbb{R}^{m}$. Then $f(S)$ is connected.

Corollary (Intermediate Value Theorem)

Let $f:[a, b] \rightarrow \mathbb{R}$ and suppose $f(a) f(b)<0$. Then there is $c \in(a, b)$ such that $f(c)=0$.

Corollary (IVT Version 2)

Let $f:[a, b] \rightarrow \mathbb{R}$ and suppose $f(a)<d<f(b)$. Then there is $c \in(a, b)$ such that $f(c)=d$

Proof of Theorem

- We show that if f is continuous on S, and $f(S)$ is not connected, then S is not connected.
- If $f(S)$ is not connected, then $f(S)=A \cup B$, where A and B are mutually separated.
- This means that neither A nor B contains a boundary point of the other.
- Then both A and B are relatively open in $f(S)$-that is, there are open subsets U and V of \mathbb{R}^{m} such that $A=U \cap f(S)$ and $B=V \cap f(S)$.
- Then $S=f^{-1}(A) \cup f^{-1}(B)$, and since f is continuous on S, $f^{-1}(A)$ and $f^{-1}(B)$ are relatively open in S, hence they are mutually separated.
- Thus, if $f(S)$ is disconnected, then S is disconnected. This is equivalent to the statement: If f is continuous on S and S is connected, then $f(S)$ is connected.

