Advanced Calculus

Professor David Wagner

¹Department of Mathematics University of Houston

September 11

A D

Pathwise Connected

Definition

A set S is *pathwise connected* if every pair of points p, q in S can be joined by a continuous path γ lying entirely in S.

Theorem

Any pathwise connected set S is connected.

Proof:

- Suppose S is pathwise connected, and $S = A \cup B$, with A and B non-empty.
- Choose p ∈ A and q ∈ B, and join p and q by a path γ in S with γ(0) = p and γ(1) = q.

- Let $A_0 = A \cap \gamma([0, 1])$, and $B_0 = B \cap \gamma([0, 1])$.
- If A and B are mutually separated, so are A₀ and B₀. In this case, γ([0, 1]) is disconnected.
- But $\gamma([0, 1])$ is connected, so A and B cannot be mutually separated.
- Thus, *S* is connected.

Theorem

No continuous function can map the open unit square S 1-1 and onto the interval [0, 1].

Proof:

- Suppose φ maps S continuously onto [0, 1]. Let p ≠ q be points in [0, 1].
- Then there are points $a, b \in S$ such that $\phi(a) = p$ and $\phi(b) = q$.
- Let α and β be continuous paths in S such that $\alpha(0) = \beta(0) = a$ and $\alpha(1) = \beta(1) = b$.
- Let c be any number between p and q. Then there must be at least 2 points r, s ∈ S such that r is on the trace of α, s is on the trace of β, and φ(r) = φ(s) = c.

• Thus, ϕ cannot be 1-1.

Professor David Wagner Advanced Calculus

・ロン ・部 と ・ ヨ と ・ ヨ と …

э.

Theorem

Let $f : I = [a, b] \rightarrow \mathbb{R}$ be continuous and 1-1. Then f is strictly monotonic on I.

Proof:

- We show that if f is not strictly monotonic, then f is not 1-1.
- Suppose f(a) < f(b). Take any x with a < x < b.
- If f(x) > f(b) then by the IVT there must be c, a < c < x, such that f(x) = f(b).
- If f(x) = f(b) or f(x) = f(a), we are done.
- if f(x) < f(a) there must be c, a < c < x, such that f(x) = f(a).
- Thus, if f is 1-1, then f(a) < f(x) < f(b).
- Now apply this argument with any x₁ < x₂ in *I* to see that *f* must be strictly increasing on *I*.

Uniform Continuity

Definition

We say that a function f is *uniformly continuous* on a set E if and only if, for each $\epsilon > 0$ there is $\delta > 0$ such that $|f(p) - f(q)| < \epsilon$ whenever p and q are in E, and $|p - q| < \delta$

Example

- f(x) = 5x is uniformly continuous on \mathbb{R} . In this case, $\delta = \frac{\epsilon}{5}$.
- If p > 0, $g(x) = \frac{1}{x}$ is uniformly continuous on $[1, \infty)$, with $\delta = \frac{\epsilon}{p^2}$.
- $g(x) = \frac{1}{x}$ is continuous but not uniformly continuous on (0, 1).

▲ □ ▶ → □ ▶

• $h(x) = \sqrt{x}$ is uniformly continuous on $[0, \infty)$.

Theorem

If E is a compact set and f is continuous on E, then f is uniformly continuous on E.

Proof:

- Suppose *f* is not uniformly continuous.
- Then there is $\epsilon > 0$ such that for any $\delta > 0$ there are points $p, q \in E$ such that $||p q|| < \delta$ and $|f(p) f(q)| \ge \epsilon$.
- Choose p_n , q_n which correspond to $\delta = \frac{1}{n}$.
- Since E is compact, by Bolzano-Weierstrass there are convergent subsequences p_n → p ∈ E and q_n → q ∈ E.
- Then $||p q|| \le ||p p_n|| + ||p_n q_n|| + ||q_n q||$ which converges to 0 as $n \to \infty$. Thus p = q but $||f(p_n) - f(q_n)|| \ge \epsilon$.
- Thus, if f is not uniformly continuous on E, then f is not continuous on E.

Uniform Convergence

Definition

Let $\{f_n\}$ be a sequence of functions which map $D \subset \mathbb{R}^n$ to \mathbb{R}^m . We say that f_n converges *uniformly on* D to a function $f : D \to \mathbb{R}^m$, if

$$\sup_{x\in D} \|f_n(x) - f(x)\| \to 0 \text{ as } n \to \infty.$$

Let A(x, y) = x + y and M(x, y) = xy. If we prove the continuity of A and F, then for f and g in C(D), then

- The vector function F(p) = (f,g)(p) = (f(p),g(p)) is continuous on D,
- 2 Then $A \circ F(p) = f(p) + g(p)$ is continuous on D, and
- $M \circ F(p) = f(p)g(p)$ is continuous on D.

Trig functions

What, exactly, are the functions sin(x) and cos(x)? We could define them as follows:

Definition

The function cos(x) is the unique solution to the Initial Value Problem:

$$f''(x) + f(x) = 0, \quad f(0) = 1, \quad f'(0) = 0,$$

and the function sin(x) is the unique solution to:

$$f''(x) + f(x) = 0, \quad f(0) = 0, \quad f'(0) = 1,$$

Intermediate Value Theorem

Theorem

Let S be a connected set, and let $f : S \to \mathbb{R}^m$. Then f(S) is connected.

Corollary (Intermediate Value Theorem)

Let $f : [a, b] \to \mathbb{R}$ and suppose f(a)f(b) < 0. Then there is $c \in (a, b)$ such that f(c) = 0.

Corollary (IVT Version 2)

Let $f : [a, b] \to \mathbb{R}$ and suppose f(a) < d < f(b). Then there is $c \in (a, b)$ such that f(c) = d

Proof of Theorem

- We show that if f is continuous on S, and f(S) is not connected, then S is not connected.
- If f(S) is not connected, then $f(S) = A \cup B$, where A and B are mutually separated.
- This means that neither A nor B contains a boundary point of the other.
- Then both A and B are relatively open in f(S)-that is, there are open subsets U and V of \mathbb{R}^m such that $A = U \cap f(S)$ and $B = V \cap f(S)$.
- Then S = f⁻¹(A) ∪ f⁻¹(B), and since f is continuous on S, f⁻¹(A) and f⁻¹(B) are relatively open in S, hence they are mutually separated.
- Thus, if f(S) is disconnected, then S is disconnected. This is equivalent to the statement: If f is continuous on S and S is connected, then f(S) is connected.