Advanced Calculus

Professor David Wagner

${ }^{1}$ Department of Mathematics
University of Houston

September 11

Pathwise Connected

Definition

A set S is pathwise connected if every pair of points p, q in S can be joined by a continuous path γ lying entirely in S.

Theorem

Any pathwise connected set S is connected.
Proof:

- Suppose S is pathwise connected, and $S=A \cup B$, with A and B non-empty.
- Choose $p \in A$ and $q \in B$, and join p and q by a path γ in S with $\gamma(0)=p$ and $\gamma(1)=q$.
- Let $A_{0}=A \cap \gamma([0,1])$, and $B_{0}=B \cap \gamma([0,1])$.
- If A and B are mutually separated, so are A_{0} and B_{0}. In this case, $\gamma([0,1])$ is disconnected.
- But $\gamma([0,1])$ is connected, so A and B cannot be mutually separated.
- Thus, S is connected.

Theorem

No continuous function can map the open unit square S 1-1 and onto the interval $[0,1]$.

Proof:

- Suppose ϕ maps S continuously onto $[0,1]$. Let $p \neq q$ be points in $[0,1]$.
- Then there are points $a, b \in S$ such that $\phi(a)=p$ and $\phi(b)=q$.
- Let α and β be continuous paths in S such that $\alpha(0)=\beta(0)=a$ and $\alpha(1)=\beta(1)=b$.
- Let c be any number between p and q. Then there must be at least 2 points $r, s \in S$ such that r is on the trace of α, s is on the trace of β, and $\phi(r)=\phi(s)=c$.
- Thus, ϕ cannot be 1-1.

Theorem

Let $f: I=[a, b] \rightarrow \mathbb{R}$ be continuous and 1-1. Then f is strictly monotonic on l.

Proof:

- We show that if f is not strictly monotonic, then f is not 1-1.
- Suppose $f(a)<f(b)$. Take any x with $a<x<b$.
- If $f(x)>f(b)$ then by the IVT there must be $c, a<c<x$, such that $f(x)=f(b)$.
- If $f(x)=f(b)$ or $f(x)=f(a)$, we are done.
- if $f(x)<f(a)$ there must be $c, a<c<x$, such that $f(x)=f(a)$.
- Thus, if f is 1-1, then $f(a)<f(x)<f(b)$.
- Now apply this argument with any $x_{1}<x_{2}$ in I to see that f must be strictly increasing on I.

Uniform Continuity

Definition

We say that a function f is uniformly continuous on a set E if and only if, for each $\epsilon>0$ there is $\delta>0$ such that $|f(p)-f(q)|<\epsilon$ whenever p and q are in E, and $|p-q|<\delta$

Example

- $f(x)=5 x$ is uniformly continuous on \mathbb{R}. In this case, $\delta=\frac{\epsilon}{5}$.
- If $p>0, g(x)=\frac{1}{x}$ is uniformly continuous on $[1, \infty)$, with $\delta=\frac{\epsilon}{p^{2}}$.
- $g(x)=\frac{1}{x}$ is continuous but not uniformly continuous on $(0,1)$.
- $h(x)=\sqrt{x}$ is uniformly continuous on $[0, \infty)$.

Theorem

If E is a compact set and f is continuous on E, then f is uniformly continuous on E.

Proof:

- Suppose f is not uniformly continuous.
- Then there is $\epsilon>0$ such that for any $\delta>0$ there are points $p, q \in E$ such that $\|p-q\|<\delta$ and $|f(p)-f(q)| \geq \epsilon$.
- Choose p_{n}, q_{n} which correspond to $\delta=\frac{1}{n}$.
- Since E is compact, by Bolzano-Weierstrass there are convergent subsequences $p_{n} \rightarrow p \in E$ and $q_{n} \rightarrow q \in E$.
- Then $\|p-q\| \leq\left\|p-p_{n}\right\|+\left\|p_{n}-q_{n}\right\|+\left\|q_{n}-q\right\|$ which converges to 0 as $n \rightarrow \infty$. Thus $p=q$ but $\left\|f\left(p_{n}\right)-f\left(q_{n}\right)\right\| \geq \epsilon$.
- Thus, if f is not uniformly continuous on E, then f is not continuous on E.

Uniform Convergence

Definition

Let $\left\{f_{n}\right\}$ be a sequence of functions which map $D \subset \mathbb{R}^{n}$ to \mathbb{R}^{m}. We say that f_{n} converges uniformly on D to a function $f: D \rightarrow \mathbb{R}^{m}$, if

$$
\sup _{x \in D}\left\|f_{n}(x)-f(x)\right\| \rightarrow 0 \text { as } n \rightarrow \infty
$$

Examples

Let $A(x, y)=x+y$ and $M(x, y)=x y$. If we prove the continuity of A and F, then for f and g in $C(D)$, then
(1) The vector function $F(p)=(f, g)(p)=(f(p), g(p))$ is continuous on D,
(2) Then $A \circ F(p)=f(p)+g(p)$ is continuous on D, and
(3) $M \circ F(p)=f(p) g(p)$ is continuous on D.

Trig functions

What, exactly, are the functions $\sin (x)$ and $\cos (x)$? We could define them as follows:

Definition

The function $\cos (x)$ is the unique solution to the Initial Value Problem:

$$
f^{\prime \prime}(x)+f(x)=0, \quad f(0)=1, \quad f^{\prime}(0)=0
$$

and the function $\sin (x)$ is the unique solution to:

$$
f^{\prime \prime}(x)+f(x)=0, \quad f(0)=0, \quad f^{\prime}(0)=1
$$

Intermediate Value Theorem

Theorem

Let S be a connected set, and let $f: S \rightarrow \mathbb{R}^{m}$. Then $f(S)$ is connected.

Corollary (Intermediate Value Theorem)

Let $f:[a, b] \rightarrow \mathbb{R}$ and suppose $f(a) f(b)<0$. Then there is $c \in(a, b)$ such that $f(c)=0$.

Corollary (IVT Version 2)

Let $f:[a, b] \rightarrow \mathbb{R}$ and suppose $f(a)<d<f(b)$. Then there is $c \in(a, b)$ such that $f(c)=d$

Proof of Theorem

- We show that if f is continuous on S, and $f(S)$ is not connected, then S is not connected.
- If $f(S)$ is not connected, then $f(S)=A \cup B$, where A and B are mutually separated.
- This means that neither A nor B contains a boundary point of the other.
- Then both A and B are relatively open in $f(S)$-that is, there are open subsets U and V of \mathbb{R}^{m} such that $A=U \cap f(S)$ and $B=V \cap f(S)$.
- Then $S=f^{-1}(A) \cup f^{-1}(B)$, and since f is continuous on S, $f^{-1}(A)$ and $f^{-1}(B)$ are relatively open in S, hence they are mutually separated.
- Thus, if $f(S)$ is disconnected, then S is disconnected. This is equivalent to the statement: If f is continuous on S and S is connected, then $f(S)$ is connected.

