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Limits

Definition

Suppose f : D C R" — RX and suppose a € D. We say that

lim f(x) = L,

X—a

if for every € > 0 there is 6 > 0 such that

If(x) — L|| < € whenever 0 < ||x — a| < 0.

Remark

Note that the value of f(a) is not relevant to the existence or value
of the limit. f(A) does not even need to be defined for the limit to
exist.
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Limits

Theorem

Let f : D C R" — Rk and suppose a € D. Then lim,_.,f(x) = L,
if an only if, for each sequence p, € D such that p, — a and

pn # a Vn, for every € > 0 there is N such that ||f (p,) — L|| < €
whenever n > N.

Proof: Exercise!
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Limits

Examples

Let
F(x,y) = ——s if (x,y) #(0,0), and let £(0,0) = 0.
X“+y

Then lim ) (0,0f (x,y) does not exist: If p, = (0 1),

pn — (0,0) and f (p,) =0. If g, = (%, 1), then g, — (0,0) and
f(qn) = 3.
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Limits

Examples

Example
Let

X2y

Aty if (x,y)# (0,0), and let £(0,0) = 0.

g(x,y) =

As in the previous example, we have f (p,) = 0, but now
1

f(qn) = = f — — 0. But f still has no limit as (x,y) — (0,0),
2
because if r, = (£, %), ra — (0,0) but f (r,) = 3

e
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Limits

Examples

Let
2 2
h(x,y) = w if (x,y) # (0,0), and let £(0,0) = 0.
Now
x| (x* + y?)
|h(x,y) — 0] < W = |x| = 0as (x,y) — (0,0).
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Derivatives

Definition

Recall from Calculus I

Definition

Let f: D C R — R.If ais interior to D, we say that f is
differentiable at a if

im f(a+ h)—f(a)
h—0 h

exists. In this case we say that the limit is the derivative of f at a,
denoted f'(a).

RENEILS

If f'(a) exists, then
f(ath)—f(a) f/(
h

f(at+h)—f(a)—f'(a)h __ 0
h = 0.

limp_o a) = limp_0
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Derivatives

If we replace f’(a) with any other number M, we get

lim M_M: lim f(a+ h) —f(a) — Mh

— ! o
h—0 h h—0 h - (f (a) M) :

This means that f’(a)h is the best linear approximation to
f(a+ h) — f(a), which in most uses is a nonlinear function.
Another way to explain this is to examine:

f(a+ h) — f(a) — f'(a)h = <f(a ha h}) —fla) f’(a)) h = e(h)h

where e(h) = f(a+ h) — f(a) — f'(a)h - 0as h— 0
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Derivatives

Again, if we replace f'(a) with M, we don't get e(h)h. We get
(f'(a) — M) h, and f’(a) — M does not tend to 0 as h — 0.
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Derivatives
Example, Theorem

Let f(x) = x2. Then f(x) — f(0) — 0x = \/xx. Here
€(x) = v/x — 0 as x — 0+. So f has a (right side) derivative, 0,
at 0.

Iff: D CR— R and a is an interior point of D, and if f'(a)
exists, then f is continuous at a.

f(x)—f(a) = f'(a)(x — a) + e(x — a)(x —a) — 0 as x — a.

Ol
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Product Rule

Suppose f and g are differentiable at a. Then so is
p(x) = f(x)g(x), and p'(a) = f'(a)g(a) + f(a)g'(a)-
Proof
o p(a+h)—p(a) =f(a+ h)g(a+ h)—f(a)g(a) =
f(a+ h)g(a+ h) —f(a)g(a+ h)+ f(a)g(a+ h) — f(a)g(a)
o =(f(a+h)—f(a))g(a+h)+f(a)(gla+h) —gla)) =

(f'(a)h+ ex(h)h) g(a+ h) + f(a) (g'(a)h + e2(h)h).

(_f'(a)g(a + h) + f(a)g'(a)) h+ (e1(h)g(a+ h) + e2(h)f(a)) h.
@ Thus, the first order term is (f'(a)g(a + h) + f(a)g’(a)) h and

the rest is e(h)h since g is continuous at a.




Derivatives

Min/Max points

Theorem

Suppose f is defined on an open interval | and a € I. If f has a
local maximum or minimum at a and f is differentiable at a, then
f"(a) =0.

Proof.

Suppose f has a local minimum at a. Then for some € > 0,
f(x)—f(a) >0 foraec (a—ea+e). Thus, for such x, %
has the same sign as x — a. Thus, f/(a) is a limit of non-negative
numbers on the right and of non-positive numbers on the right.

Thus, if f'(a) exists, it must be 0. O
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Derivatives

Rolle’s Theorem

Suppose f is continuous on [a, b] and differentiable on (a,

a,b). If
f(a) = f(b), there is at least one c € (a, b) such that f'(c)

=0.

Proof.

By the Extreme Value Theorem, f must attain a minimum value
and a maximum value on the compact set [a, b]. If both are
attained at the endpoints, then the maximum equals the minimum,
so f is constant on [a, b], and f’(x) = 0 for x € (a, b). Otherwise,
an extreme value is attained at an interior point ¢, so that

f'(c) = 0 by the previous theorem. O
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Derivatives
Mean Value Theorem

Suppose f is continuous on [a, b] and differentiable on (a, b). Then
f(b)—f(a)

there is at least one c € (a, b) such that f'(c) = ==5—5~

The line through (a,f(a)) and (b, f(b)) has slope %. Let

g0) = F() - O ()

Then g is continuous on [a, b] and differentiable on (a, b).
g(b) = g(a), so Rolle’s Theorem states that there must be

c € (a, b) such that g’(c) = f'(c) — % =0. O
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Derivatives

Applications of MVT

Definition

We say that a function f is increasing (respectively strictly
increasing) on an interval /, if f(a) < f(b) (resp. f(a) < f(b)
whenever a, b € | and a < b. We define decreasing and strictly
decreasing functions similarly.

Theorem (Interpretation of the derivative)

Suppose f is differentiable on the open interval I.

a If|f'(x)| < C for all x € I, then |f(b) — f(a)| < C|b— a| for all
a, bel.

b If f'(x) =0 for all x € I, then f is constant on |.

c Iff'(x) >0 (resp. f'(x) >0, f'(x) <0, or f'(x) <0) for all
x € |, then f is increasing (resp. strictly increasing, decreasing,
strictly decreasing) on .
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Derivatives
Proof

Let a, b € [. Since f is differentiable on / and [a,b] C I, f is
continuous on /. Then the MVT gives us a point ¢ € (a, b) such
that f(b) — f(a) = f'(c)(b — a). For a, |f'(c)| < C, so

|f(b) — f(a)| < C|b— a|. Parts b, c are proved similarly. O

If all we know about f is that f is differentiable at a and f’(a) > 0,
it does not follow that f is increasing in some neighborhood of a.

o’
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Derivatives

Generalized MVT

Theorem (Generalized MVT)

Suppose that f and g are continuous on [a, b, differentiable on
(a, b), and that g'(x) # 0 for all x € (a, b). Then there is
c € (a, b) such that

fi(c) _ F(b)~ f(a)
g(c)  &(b) - g(a)
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Derivatives

Proof of Generalized MVT

Proof

o Let h(x) =
(f(b) — f(a)) (g(x) — &(a)) — (g(b) — g(a)) (f(x) — f(a)).

@ Then h is continuous on [a, b|, differentiable on (a, b), and
h(a) = h(b) = 0.

@ By Rolle’s Theorem there is ¢ € (a, b) such that
H(c) = (f(b) — f(a)) &'(c) — (&(b) — &(a)) '(c) = 0.

@ Since g’ is never 0 on (a, b), g’(c) # 0 and g(b) — g(a) #0
(by MVT).

@ Then dividing by g’(c) (g(b) — g(a)) gives the result.




Derivatives

Remark

If we use f and g to parameterize a curve: y = f(t), x = g(t),
t € [a, b], then by the chain rule, % = 2/,8 In this case the
Generalized MVT says that there is a tangent line to the
parameterized curve, that is parallel to the secant line through

(a,f(a)) and (b, f(b)).
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Derivatives

Application of Generalized MVT

Theorem (L'Hdpital’s Rule 1)

Suppose f and g are differentiable functions on (a, b) and

lim f(x)= lim g(x)=0.

X—ra+ x—ra+

If g’ never vanishes on (a, b) and

f‘/
fim ) _
x—a+ g'(x)
then g never vanishes on (a, b) and
f
lim ﬁ = L.
X—ra+ g(x)
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