Advanced Calculus

Professor David Wagner

${ }^{1}$ Department of Mathematics
University of Houston

September 16

Definition

Definition

Suppose $f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ and suppose $a \in \bar{D}$. We say that

$$
\lim _{x \rightarrow a} f(x)=L
$$

if for every $\epsilon>0$ there is $\delta>0$ such that

$$
\|f(x)-L\|<\epsilon \text { whenever } 0<\|x-a\|<\delta
$$

Remark

Note that the value of $f(a)$ is not relevant to the existence or value of the limit. $f(A)$ does not even need to be defined for the limit to exist.

Theorem

Theorem

Let $f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ and suppose $a \in \bar{D}$. Then $\lim _{x \rightarrow a} f(x)=L$, if an only if, for each sequence $p_{n} \in D$ such that $p_{n} \rightarrow a$ and $p_{n} \neq a \forall n$, for every $\epsilon>0$ there is N such that $\left\|f\left(p_{n}\right)-L\right\|<\epsilon$ whenever $n>N$.

Proof: Exercise!

Examples

Example

Let

$$
f(x, y)=\frac{x y}{x^{2}+y^{2}} \text { if }(x, y) \neq(0,0), \text { and let } f(0,0)=0
$$

Then $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ does not exist: If $p_{n}=\left(0, \frac{1}{n}\right)$, $p_{n} \rightarrow(0,0)$ and $f\left(p_{n}\right)=0$. If $q_{n}=\left(\frac{1}{n}, \frac{1}{n}\right)$, then $q_{n} \rightarrow(0,0)$ and $f\left(q_{n}\right)=\frac{1}{2}$.

Examples

Example

Let

$$
g(x, y)=\frac{x^{2} y}{x^{4}+y^{2}}, \text { if }(x, y) \neq(0,0), \text { and let } f(0,0)=0
$$

As in the previous example, we have $f\left(p_{n}\right)=0$, but now $f\left(q_{n}\right)=\frac{\frac{1}{n^{3}}}{\frac{1}{n^{4}}+\frac{1}{n^{2}}} \rightarrow 0$. But f still has no limit as $(x, y) \rightarrow(0,0)$, because if $r_{n}=\left(\frac{1}{n}, \frac{1}{n^{2}}\right), r_{n} \rightarrow(0,0)$ but $f\left(r_{n}\right)=\frac{1}{2}$

Examples

Example

Let

$$
h(x, y)=\frac{x\left(x^{2}-y^{2}\right)}{x^{2}+y^{2}}, \text { if }(x, y) \neq(0,0), \text { and let } f(0,0)=0
$$

Now

$$
|h(x, y)-0| \leq \frac{|x|\left(x^{2}+y^{2}\right)}{x^{2}+y^{2}}=|x| \rightarrow 0 \text { as }(x, y) \rightarrow(0,0)
$$

Definition

Recall from Calculus I:

Definition

Let $f: D \subset \mathbb{R} \rightarrow \mathbb{R}$.If a is interior to D, we say that f is differentiable at a if

$$
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

exists. In this case we say that the limit is the derivative of f at a, denoted $f^{\prime}(a)$.

Remark

If $f^{\prime}(a)$ exists, then
$\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}-f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)-f^{\prime}(a) h}{h}=0$.

If we replace $f^{\prime}(a)$ with any other number M, we get

$$
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}-M=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)-M h}{h}=\left(f^{\prime}(a)-M\right) .
$$

This means that $f^{\prime}(a) h$ is the best linear approximation to $f(a+h)-f(a)$, which in most uses is a nonlinear function.
Another way to explain this is to examine:

$$
f(a+h)-f(a)-f^{\prime}(a) h=\left(\frac{f(a+h)-f(a)}{h}-f^{\prime}(a)\right) h=\epsilon(h) h
$$

where $\epsilon(h)=f(a+h)-f(a)-f^{\prime}(a) h \rightarrow 0$ as $h \rightarrow 0$

Again, if we replace $f^{\prime}(a)$ with M, we don't get $\epsilon(h) h$. We get $\left(f^{\prime}(a)-M\right) h$, and $f^{\prime}(a)-M$ does not tend to 0 as $h \rightarrow 0$.

Example, Theorem

Let $f(x)=x^{\frac{3}{2}}$. Then $f(x)-f(0)-0 x=\sqrt{x} x$. Here $\epsilon(x)=\sqrt{x} \rightarrow 0$ as $x \rightarrow 0+$. So f has a (right side) derivative, 0 , at 0 .

Theorem

If $f: D \subset \mathbb{R} \rightarrow \mathbb{R}$ and a is an interior point of D, and if $f^{\prime}(a)$ exists, then f is continuous at a.

Proof.

$$
f(x)-f(a)=f^{\prime}(a)(x-a)+\epsilon(x-a)(x-a) \rightarrow 0 \text { as } x \rightarrow a .
$$

Product Rule

Theorem

Suppose f and g are differentiable at a. Then so is $p(x)=f(x) g(x)$, and $p^{\prime}(a)=f^{\prime}(a) g(a)+f(a) g^{\prime}(a)$.

Proof

- $p(a+h)-p(a)=f(a+h) g(a+h)-f(a) g(a)=$ $f(a+h) g(a+h)-f(a) g(a+h)+f(a) g(a+h)-f(a) g(a)$
- $=(f(a+h)-f(a)) g(a+h)+f(a)(g(a+h)-g(a))=$ $\left(f^{\prime}(a) h+\epsilon_{1}(h) h\right) g(a+h)+f(a)\left(g^{\prime}(a) h+\epsilon_{2}(h) h\right)$.
- =
$\left(f^{\prime}(a) g(a+h)+f(a) g^{\prime}(a)\right) h+\left(\epsilon_{1}(h) g(a+h)+\epsilon_{2}(h) f(a)\right) h$.
- Thus, the first order term is $\left(f^{\prime}(a) g(a+h)+f(a) g^{\prime}(a)\right) h$ and the rest is $\epsilon(h) h$ since g is continuous at a.

Min/Max points

Theorem

Suppose f is defined on an open interval I and $a \in I$. If f has a local maximum or minimum at a and f is differentiable at a, then $f^{\prime \prime}(a)=0$.

Proof.

Suppose f has a local minimum at a. Then for some $\epsilon>0$, $f(x)-f(a) \geq 0$ for $a \in(a-\epsilon, a+\epsilon)$. Thus, for such $x, \frac{f(x)-f(a)}{x-a}$ has the same sign as $x-a$. Thus, $f^{\prime}(a)$ is a limit of non-negative numbers on the right and of non-positive numbers on the right. Thus, if $f^{\prime}(a)$ exists, it must be 0 .

Rolle's Theorem

Theorem

Suppose f is continuous on $[a, b]$ and differentiable on (a, b). If $f(a)=f(b)$, there is at least one $c \in(a, b)$ such that $f^{\prime}(c)=0$.

Proof.

By the Extreme Value Theorem, f must attain a minimum value and a maximum value on the compact set $[a, b]$. If both are attained at the endpoints, then the maximum equals the minimum, so f is constant on $[a, b]$, and $f^{\prime}(x)=0$ for $x \in(a, b)$. Otherwise, an extreme value is attained at an interior point c, so that $f^{\prime}(c)=0$ by the previous theorem.

Mean Value Theorem

Theorem

Suppose f is continuous on $[a, b]$ and differentiable on (a, b). Then there is at least one $c \in(a, b)$ such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$.

Proof.

The line through $(a, f(a))$ and $(b, f(b))$ has slope $\frac{f(b)-f(a)}{b-a}$. Let

$$
g(x)=f(x)-\frac{f(b)-f(a)}{b-a}(x-a) .
$$

Then g is continuous on $[a, b]$ and differentiable on (a, b). $g(b)=g(a)$, so Rolle's Theorem states that there must be $c \in(a, b)$ such that $g^{\prime}(c)=f^{\prime}(c)-\frac{f(b)-f(a)}{b-a}=0$.

Applications of MVT

Definition

We say that a function f is increasing (respectively strictly increasing) on an interval I, if $f(a) \leq f(b)$ (resp. $f(a)<f(b)$ whenever $a, b \in I$ and $a<b$. We define decreasing and strictly decreasing functions similarly.

Theorem (Interpretation of the derivative)

Suppose f is differentiable on the open interval I.
a If $\left|f^{\prime}(x)\right| \leq C$ for all $x \in I$, then $|f(b)-f(a)| \leq C|b-a|$ for all $a, b \in I$.
b If $f^{\prime}(x)=0$ for all $x \in I$, then f is constant on I.
c If $f^{\prime}(x) \geq 0$ (resp. $f^{\prime}(x)>0, f^{\prime}(x) \leq 0$, or $f^{\prime}(x)<0$) for all $x \in I$, then f is increasing (resp. strictly increasing, decreasing, strictly decreasing) on I.

Proof

Proof.

Let $a, b \in I$. Since f is differentiable on I and $[a, b] \subset I, f$ is continuous on l. Then the MVT gives us a point $c \in(a, b)$ such that $f(b)-f(a)=f^{\prime}(c)(b-a)$. For $a,\left|f^{\prime}(c)\right| \leq C$, so $|f(b)-f(a)| \leq C|b-a|$. Parts b, c are proved similarly.

Remark

If all we know about f is that f is differentiable at a and $f^{\prime}(a)>0$, it does not follow that f is increasing in some neighborhood of a.

Generalized MVT

Theorem (Generalized MVT)

Suppose that f and g are continuous on $[a, b]$, differentiable on (a, b), and that $g^{\prime}(x) \neq 0$ for all $x \in(a, b)$. Then there is $c \in(a, b)$ such that

$$
\frac{f^{\prime}(c)}{g^{\prime}(c)}=\frac{f(b)-f(a)}{g(b)-g(a)}
$$

Proof of Generalized MVT

Proof

- Let $h(x)=$ $(f(b)-f(a))(g(x)-g(a))-(g(b)-g(a))(f(x)-f(a))$.
- Then h is continuous on $[a, b]$, differentiable on (a, b), and $h(a)=h(b)=0$.
- By Rolle's Theorem there is $c \in(a, b)$ such that $h^{\prime}(c)=(f(b)-f(a)) g^{\prime}(c)-(g(b)-g(a)) f^{\prime}(c)=0$.
- Since g^{\prime} is never 0 on $(a, b), g^{\prime}(c) \neq 0$ and $g(b)-g(a) \neq 0$ (by MVT).
- Then dividing by $g^{\prime}(c)(g(b)-g(a))$ gives the result.

Remark

If we use f and g to parameterize a curve: $y=f(t), x=g(t)$, $t \in[a, b]$, then by the chain rule, $\frac{d y}{d x}=\frac{f^{\prime}(t)}{g^{\prime}(t)}$. In this case the Generalized MVT says that there is a tangent line to the parameterized curve, that is parallel to the secant line through $(a, f(a))$ and $(b, f(b))$.

Application of Generalized MVT

Theorem (L'Hôpital's Rule I)

Suppose f and g are differentiable functions on (a, b) and

$$
\lim _{x \rightarrow a+} f(x)=\lim _{x \rightarrow a+} g(x)=0
$$

If g^{\prime} never vanishes on (a, b) and

$$
\lim _{x \rightarrow a+} \frac{f^{\prime}(x)}{g^{\prime}(x)}=L
$$

then g never vanishes on (a, b) and

$$
\lim _{x \rightarrow a+} \frac{f(x)}{g(x)}=L
$$

