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Derivatives of functions of several variables

Definition

Definition

Suppose f : D ⊂ Rn → Rk and suppose a is an interior point of D.
If the limit

lim
h→0

f (x1, · · · , xi + h, · · · , xn)− f (x1, · · · , xi , · · · , xn)

h

exists, we call this limit the partial derivative of f with respect to
xi . Several notations are used for this:

∂f

∂xi
, fxi , fi , ∂xi f , ∂i f .
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Derivatives of functions of several variables

Example

Let f (x , y , z) = e3x sin(xy)
1+5y−7z .Then

∂x f = ∂1f =
∂f

∂x
=

3e3x sin(xy) + e3xy cos(xy)

1 + 5y − 7x
, (1)

∂y f = ∂2f =
∂f

∂y
=

e3xy cos(xy)− 5e3x sin(xy)

(1 + 5y − 7x)2
(2)

∂z f = ∂3f =
∂f

∂z
=

7e3x sin(xy)

(1 + 5y − 7x)2
(3)
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Derivatives of functions of several variables

Example

We have already seen that the function f (x , y) = xy
x2+y2 has no

limit as (x , y)→ 0. But

∂f

∂x
(0, 0) = lim

h→0

h0

h2 + 0
= 0,

and similarly ∂f
∂y (0, 0) = 0.

Thus, the existence of first order partial derivatives does not give
us continuity of f .
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Derivatives of functions of several variables

We need a definition of derivative that gives us the rate of change
of f (x) in any direction. We could try a straight-forward
generalization of the 1− D derivative:

f ′(x) = lim
h→0

f (x + h)− f (x)

h
,

where we let x and h denote vectors. This has the obvious
difficulty that we can’t divide by the vector h.
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Derivatives of functions of several variables

Instead we start with the relation

f (x + h)− f (x)− f ′(x)h = ε(h)h,

where ε(h)→ 0 as h→ 0. With two changes, this makes perfect
sense if we allow x and h to be vectors in Rn, and we take f and ε
to be functions on D ⊂ Rn to R. One change is that we replace
ε(h)h with ε(h) ‖h‖. The other change is that we replace f ′(x)h by
either Df (x)(h), or ∇f (x) · h. With the first choice, Df (x) is a
linear transformation from Rn to R (so that Df (x) maps h to R).
The second choice is to identify a vector “∇f (x)′′ so that
∇f (x) · h = Df (x)(h). As it turns out, for real valued functions of
several variables, it is simpler to work with ∇f .
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Derivatives of functions of several variables

Definition of “differentiable” and “gradient”

Definition

Let f : D ⊂ Rn → R, and let x be an interior point of R. We say
that f is differentiable at x if there is a vector v ∈ Rn such that

f (x + h)− f (x) = v · x + ε(h) ‖h‖ .

In this case, v uniquely determined and is called the gradient of f
at x, ∇f (x).

Equivalently, we could divide this equation by ‖h‖ to get:

f (x + h)− f (x)−∇f (x) · h
‖h‖

= ε(h)→ 0 as ‖h‖ → 0.
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Derivatives of functions of several variables

Either characterization tells us that the (usually) nonlinear function
of h given by g(h) = f (x + h)− f (x) is very well approximated by
the linear function of h, L(h) = ∇f (x) · h. The difference is
ε(h) ‖h‖, not C ‖h‖.
This relation also characterizes the meaning of a tangent plane
(n = 2) or tangent hyperplane (n > 2). To see this let n = 2. The
graph of f , z = f (x + h1, y + h2) intersects the graph of
z = f (x , y) +∇f (x , y) · h at (x , y , f (x , y)). The two graphs stay
very close to each other as long as h = (h1, h2) is small: the
vertical distance between the graphs at (x + h1, y + h2), is
ε(h) ‖h‖.
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Derivatives of functions of several variables

Now let h = hei , where ei is the i th standard unit vector
({e1, · · · , en} form an orthonormal basis for Rn). Then

lim
h→0

f (x1, · · · , xi + h, · · · , xn)− f (x1, · · · , xn)

h
= ∇f (x) · ei .

The left hand side is ∂f
∂xi

(x). The right side is the i th component

of ∇f (x). We conclude:

Theorem

If f is differentiable at x, then all first order partial derivatives
∂f
∂xi

(x), i = 1, · · · , n exist and equal the components of ∇f (x).
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Derivatives of functions of several variables

For a different perspective, consider expanding ∇f (x) in the
orthonormal basis (e1, · · · , en):

∇f (x) =
n∑

i=1

(∇f (x) · ei ) ei =
n∑

i=1

∂f

∂xi
(x) · ei .
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Derivatives of functions of several variables

Example, Theorem

Let f (x , y , z) = x2 + 2y2 + 3z2. Then ∇f (x , y , z) = (2x , 4y , 6z).
∇f (1,−2, 5) = (2,−8, 30)

Theorem

If f is differentiable at x, then f is continuous at x.

Proof.

f (y)− f (x) = ∇f (x) · (y − x) + ε(y − x) ‖y − x‖ → 0 as y→ x.
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Derivatives of functions of several variables

Definition

If f and its first order partial derivatives are continuous in an open
set U, we say that f is continuously differentiable, or of class C 1,
on U.

Theorem

If f is continuously differentiable on an open set U, then f is
differentiable at each x ∈ U.
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Derivatives of functions of several variables

Proof

Proof: For simplicity, let n = 2. Fix a = (x , y) ∈ U, and let ε > 0.
For h = (h1, h2) near 0,

f (a+h)−f (x) = f (x+h1, y+h2)−f (x , y+h2)+f (x , y+h2)−f (x , y).

By the MVT there are numbers c1 between 0 and h1, and c2
between 0 and h2 such that:

f (x + h1, y + h2)− f (x , y + h2) =
∂f

∂x
(x + c1, y + h2) h1

f (x , y + h2)− f (x , y) =
∂f

∂y
(x , y + c2) h2.
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Derivatives of functions of several variables

Proof continued

Then

f (a + h)− f (a)−∇f · h =

(
∂f

∂x
(x + c1, y + h2)− ∂f

∂x
(a)

)
h1

+

(
∂f

∂x
(x , y + c2)− ∂f

∂y
(a)

)
h2.

Since ∂f
∂x and ∂f

∂y are continuous on U, and ci is between 0 and hi ,

the factors of h1 and h2 tend to 0 as h→ 0. So the right hand
side is ε(h) ‖h‖.
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Derivatives of functions of several variables

Directional Derivatives

e

Definition

Let D be an open subset of Rn, and let f : D → R. Let u be a
unit vector in Rn. We say that f has a directional derivative at
x ∈ D in the direction u, if

lim
h→0

f (x + hu)− f (x)

h
exists.

We denote this limit by (Duf ) (x).

The partial derivatives of f are examples of directional derivatives
(when the coordinate system is orthonormal). Note that the
existence or value of a directional derivative does not depend on a
choice of coordinates.
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Derivatives of functions of several variables

Directional Derivatives

Theorem

If f is differentiable at x, then for each unit vector u, (Duf ) (x)
exists and equals ∇f (x) · u.

Proof.

f (x + hu)− f (x)

h
= ∇f (x) · u + ε(hu).

In the limit as h→ 0, we obtain the stated result.
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Derivatives of functions of several variables

Tangent plane

Let f be differentiable at x. When n = 2 and x fixed, the graph of
z = f (x) +∇f (x) · h is a plane in R3 tangent to the graph of
z = f (x + h) at (h = 0, z = f (x)). If u is a unit vector in R2, the
line with direction vector (u, (Duf ) (x)) through (h = 0, z = f (x))
is in the tangent plane because (Duf ) (x) = ∇f · u.
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Derivatives of functions of several variables

Mean Value Theorem

Theorem

Suppose f is continuous on [a, b] and differentiable on (a, b). Then

there is at least one c ∈ (a, b) such that f ′(c) = f (b)−f (a)
b−a .

Proof.

The line through (a, f (a)) and (b, f (b)) has slope f (b)−f (a)
b−a . Let

g(x) = f (x)− f (b)− f (a)

b − a
(x − a) .

Then g is continuous on [a, b] and differentiable on (a, b).
g(b) = g(a), so Rolle’s Theorem states that there must be

c ∈ (a, b) such that g ′(c) = f ′(c)− f (b)−f (a)
b−a = 0.
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Derivatives of functions of several variables

Applications of MVT

Definition

We say that a function f is increasing (respectively strictly
increasing) on an interval I , if f (a) ≤ f (b) (resp. f (a) < f (b)
whenever a, b ∈ I and a < b. We define decreasing and strictly
decreasing functions similarly.

Theorem (Interpretation of the derivative)

Suppose f is differentiable on the open interval I .

a If |f ′(x)| ≤ C for all x ∈ I , then |f (b)− f (a)| ≤ C |b − a| for all
a, b ∈ I .

b If f ′(x) = 0 for all x ∈ I , then f is constant on I .

c If f ′(x) ≥ 0 (resp. f ′(x) > 0, f ′(x) ≤ 0, or f ′(x) < 0) for all
x ∈ I , then f is increasing (resp. strictly increasing, decreasing,
strictly decreasing) on I .
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Derivatives of functions of several variables

Proof

Proof.

Let a, b ∈ I . Since f is differentiable on I and [a, b] ⊂ I , f is
continuous on I . Then the MVT gives us a point c ∈ (a, b) such
that f (b)− f (a) = f ′(c)(b − a). For a, |f ′(c)| ≤ C , so
|f (b)− f (a)| ≤ C |b − a|. Parts b, c are proved similarly.

Remark

If all we know about f is that f is differentiable at a and f ′(a) > 0,
it does not follow that f is increasing in some neighborhood of a.
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Derivatives of functions of several variables

Generalized MVT

Theorem (Generalized MVT)

Suppose that f and g are continuous on [a, b], differentiable on
(a, b), and that g ′(x) 6= 0 for all x ∈ (a, b). Then there is
c ∈ (a, b) such that

f ′(c)

g ′(c)
=

f (b)− f (a)

g(b)− g(a)
.
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Derivatives of functions of several variables

Proof of Generalized MVT

Proof

Let h(x) =
(f (b)− f (a)) (g(x)− g(a))− (g(b)− g(a)) (f (x)− f (a)).

Then h is continuous on [a, b], differentiable on (a, b), and
h(a) = h(b) = 0.

By Rolle’s Theorem there is c ∈ (a, b) such that
h′(c) = (f (b)− f (a)) g ′(c)− (g(b)− g(a)) f ′(c) = 0.

Since g ′ is never 0 on (a, b), g ′(c) 6= 0 and g(b)− g(a) 6= 0
(by MVT).

Then dividing by g ′(c) (g(b)− g(a)) gives the result.
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Derivatives of functions of several variables

Remark

If we use f and g to parameterize a curve: y = f (t), x = g(t),

t ∈ [a, b], then by the chain rule, dy
dx = f ′(t)

g ′(t) . In this case the
Generalized MVT says that there is a tangent line to the
parameterized curve, that is parallel to the secant line through
(a, f (a)) and (b, f (b)).
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Derivatives of functions of several variables

Application of Generalized MVT

Theorem (L’Hôpital’s Rule I)

Suppose f and g are differentiable functions on (a, b) and

lim
x→a+

f (x) = lim
x→a+

g(x) = 0.

If g ′ never vanishes on (a, b) and

lim
x→a+

f ′(x)

g ′(x)
= L,

then g never vanishes on (a, b) and

lim
x→a+

f (x)

g(x)
= L.
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