Advanced Calculus

Professor David Wagner

${ }^{1}$ Department of Mathematics
University of Houston

September 18

Definition

Definition

Suppose $f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ and suppose a is an interior point of D. If the limit

$$
\lim _{h \rightarrow 0} \frac{f\left(x_{1}, \cdots, x_{i}+h, \cdots, x_{n}\right)-f\left(x_{1}, \cdots, x_{i}, \cdots, x_{n}\right)}{h}
$$

exists, we call this limit the partial derivative of f with respect to x_{i}. Several notations are used for this:

$$
\frac{\partial f}{\partial x_{i}}, \quad f_{x_{i}}, \quad f_{i}, \quad \partial_{x_{i}} f, \quad \partial_{i} f
$$

Example

Let $f(x, y, z)=\frac{e^{3 x} \sin (x y)}{1+5 y-7 z}$. Then

$$
\begin{align*}
& \partial_{x} f=\partial_{1} f=\frac{\partial f}{\partial x}=\frac{3 e^{3} x \sin (x y)+e^{3 x} y \cos (x y)}{1+5 y-7 x}, \tag{1}\\
& \partial_{y} f=\partial_{2} f=\frac{\partial f}{\partial y}=\frac{e^{3 x} y \cos (x y)-5 e^{3 x} \sin (x y)}{(1+5 y-7 x)^{2}} \tag{2}\\
& \partial_{z} f=\partial_{3} f=\frac{\partial f}{\partial z}=\frac{7 e^{3 x} \sin (x y)}{(1+5 y-7 x)^{2}} \tag{3}
\end{align*}
$$

Example

We have already seen that the function $f(x, y)=\frac{x y}{x^{2}+y^{2}}$ has no limit as $(x, y) \rightarrow 0$. But

$$
\frac{\partial f}{\partial x}(0,0)=\lim _{h \rightarrow 0} \frac{h 0}{h^{2}+0}=0
$$

and similarly $\frac{\partial f}{\partial y}(0,0)=0$.
Thus, the existence of first order partial derivatives does not give us continuity of f.

We need a definition of derivative that gives us the rate of change of $f(x)$ in any direction. We could try a straight-forward generalization of the $1-D$ derivative:

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

where we let x and h denote vectors. This has the obvious difficulty that we can't divide by the vector h.

Instead we start with the relation

$$
f(x+h)-f(x)-f^{\prime}(x) h=\epsilon(h) h,
$$

where $\epsilon(h) \rightarrow 0$ as $h \rightarrow 0$. With two changes, this makes perfect sense if we allow x and h to be vectors in \mathbb{R}^{n}, and we take f and ϵ to be functions on $D \subset \mathbb{R}^{n}$ to \mathbb{R}. One change is that we replace $\epsilon(h) h$ with $\epsilon(h)\|h\|$. The other change is that we replace $f^{\prime}(x) h$ by either $D f(x)(h)$, or $\nabla f(x) \cdot h$. With the first choice, $D f(x)$ is a linear transformation from \mathbb{R}^{n} to \mathbb{R} (so that $\operatorname{Df}(x)$ maps h to \mathbb{R}). The second choice is to identify a vector " $\nabla f(x)$ " so that $\nabla f(x) \cdot h=D f(x)(h)$. As it turns out, for real valued functions of several variables, it is simpler to work with ∇f.

Definition of "differentiable" and "gradient"

Definition

Let $f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$, and let \mathbf{x} be an interior point of \mathbb{R}. We say that f is differentiable at \mathbf{x} if there is a vector $\mathbf{v} \in \mathbb{R}^{n}$ such that

$$
f(\mathbf{x}+\mathbf{h})-f(\mathbf{x})=\mathbf{v} \cdot \mathbf{x}+\epsilon(\mathbf{h})\|\mathbf{h}\| .
$$

In this case, \mathbf{v} uniquely determined and is called the gradient of f at $\mathbf{x}, \nabla f(\mathbf{x})$.

Equivalently, we could divide this equation by $\|\mathbf{h}\|$ to get:

$$
\frac{f(\mathbf{x}+\mathbf{h})-f(\mathbf{x})-\nabla f(\mathbf{x}) \cdot \mathbf{h}}{\|\mathbf{h}\|}=\epsilon(\mathbf{h}) \rightarrow 0 \text { as }\|\mathbf{h}\| \rightarrow 0
$$

Either characterization tells us that the (usually) nonlinear function of \mathbf{h} given by $g(\mathbf{h})=f(\mathbf{x}+\mathbf{h})-f(\mathbf{x})$ is very well approximated by the linear function of $\mathbf{h}, L(\mathbf{h})=\nabla f(\mathbf{x}) \cdot \mathbf{h}$. The difference is $\epsilon(\mathbf{h})\|\mathbf{h}\|$, not $C\|\mathbf{h}\|$.
This relation also characterizes the meaning of a tangent plane $(n=2)$ or tangent hyperplane $(n>2)$. To see this let $n=2$. The graph of $f, z=f\left(x+h_{1}, y+h_{2}\right)$ intersects the graph of $z=f(x, y)+\nabla f(x, y) \cdot \mathbf{h}$ at $(x, y, f(x, y))$. The two graphs stay very close to each other as long as $\mathbf{h}=\left(h_{1}, h_{2}\right)$ is small: the vertical distance between the graphs at $\left(x+h_{1}, y+h_{2}\right)$, is $\epsilon(\mathbf{h})\|\mathbf{h}\|$.

Now let $\mathbf{h}=h e_{i}$, where e_{i} is the $i^{t h}$ standard unit vector ($\left\{e_{1}, \cdots, e_{n}\right\}$ form an orthonormal basis for \mathbb{R}^{n}). Then

$$
\lim _{h \rightarrow 0} \frac{f\left(x_{1}, \cdots, x_{i}+h, \cdots, x_{n}\right)-f\left(x_{1}, \cdots, x_{n}\right)}{h}=\nabla f(\mathbf{x}) \cdot e_{i}
$$

The left hand side is $\frac{\partial f}{\partial x_{i}}(\mathbf{x})$. The right side is the $i^{\text {th }}$ component of $\nabla f(\mathbf{x})$. We conclude:

Theorem

If f is differentiable at \mathbf{x}, then all first order partial derivatives $\frac{\partial f}{\partial x_{i}}(\mathbf{x}), i=1, \cdots, n$ exist and equal the components of $\nabla f(\mathbf{x})$.

For a different perspective, consider expanding $\nabla f(\mathbf{x})$ in the orthonormal basis $\left(e_{1}, \cdots, e_{n}\right)$:

$$
\nabla f(\mathbf{x})=\sum_{i=1}^{n}\left(\nabla f(\mathbf{x}) \cdot e_{i}\right) e_{i}=\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}(\mathbf{x}) \cdot e_{i} .
$$

Example, Theorem

Let $f(x, y, z)=x^{2}+2 y^{2}+3 z^{2}$. Then $\nabla f(x, y, z)=(2 x, 4 y, 6 z)$.
$\nabla f(1,-2,5)=(2,-8,30)$

Theorem

If f is differentiable at \mathbf{x}, then f is continuous at \mathbf{x}.

Proof.

$$
f(\mathbf{y})-f(\mathbf{x})=\nabla f(\mathbf{x}) \cdot(\mathbf{y}-\mathbf{x})+\epsilon(\mathbf{y}-\mathbf{x})\|\mathbf{y}-\mathbf{x}\| \rightarrow 0 \text { as } \mathbf{y} \rightarrow \mathbf{x} .
$$

Definition

If f and its first order partial derivatives are continuous in an open set U, we say that f is continuously differentiable, or of class C^{1}, on U.

Theorem

If f is continuously differentiable on an open set U, then f is differentiable at each $\mathbf{x} \in U$.

Proof

Proof: For simplicity, let $n=2$. Fix $\mathbf{a}=(x, y) \in U$, and let $\epsilon>0$.
For $\mathbf{h}=\left(h_{1}, h_{2}\right)$ near $\mathbf{0}$,
$f(\mathbf{a}+\mathbf{h})-f(\mathbf{x})=f\left(x+h_{1}, y+h_{2}\right)-f\left(x, y+h_{2}\right)+f\left(x, y+h_{2}\right)-f(x, y)$.
By the MVT there are numbers c_{1} between 0 and h_{1}, and c_{2} between 0 and h_{2} such that:

$$
\begin{aligned}
f\left(x+h_{1}, y+h_{2}\right)-f\left(x, y+h_{2}\right) & =\frac{\partial f}{\partial x}\left(x+c_{1}, y+h_{2}\right) h_{1} \\
f\left(x, y+h_{2}\right)-f(x, y) & =\frac{\partial f}{\partial y}\left(x, y+c_{2}\right) h_{2} .
\end{aligned}
$$

Proof continued

Then

$$
\begin{aligned}
f(\mathbf{a}+\mathbf{h})-f(\mathbf{a})-\nabla f \cdot \mathbf{h} & =\left(\frac{\partial f}{\partial x}\left(x+c_{1}, y+h_{2}\right)-\frac{\partial f}{\partial x}(\mathbf{a})\right) h_{1} \\
& +\left(\frac{\partial f}{\partial x}\left(x, y+c_{2}\right)-\frac{\partial f}{\partial y}(\mathbf{a})\right) h_{2} .
\end{aligned}
$$

Since $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ are continuous on U, and c_{i} is between 0 and h_{i}, the factors of h_{1} and h_{2} tend to 0 as $\mathbf{h} \rightarrow 0$. So the right hand side is $\epsilon(\mathbf{h})\|\mathbf{h}\|$.

Directional Derivatives

e

Definition

Let D be an open subset of \mathbb{R}^{n}, and let $f: D \rightarrow \mathbb{R}$. Let \mathbf{u} be a unit vector in \mathbb{R}^{n}. We say that f has a directional derivative at $\mathbf{x} \in D$ in the direction \mathbf{u}, if

$$
\lim _{h \rightarrow 0} \frac{f(\mathbf{x}+h \mathbf{u})-f(\mathbf{x})}{h} \text { exists. }
$$

We denote this limit by $\left(D_{\mathbf{u}} f\right)(\mathbf{x})$.
The partial derivatives of f are examples of directional derivatives (when the coordinate system is orthonormal). Note that the existence or value of a directional derivative does not depend on a choice of coordinates.

Directional Derivatives

Theorem

If f is differentiable at \mathbf{x}, then for each unit vector $\mathbf{u},\left(D_{\mathbf{u}} f\right)(\mathbf{x})$ exists and equals $\nabla f(\mathbf{x}) \cdot \mathbf{u}$.

Proof.

$$
\frac{f(\mathbf{x}+h \mathbf{u})-f(\mathbf{x})}{h}=\nabla f(\mathbf{x}) \cdot \mathbf{u}+\epsilon(h \mathbf{u}) .
$$

In the limit as $h \rightarrow 0$, we obtain the stated result.

Tangent plane

Let f be differentiable at \mathbf{x}. When $n=2$ and \mathbf{x} fixed, the graph of $z=f(\mathbf{x})+\nabla f(\mathbf{x}) \cdot \mathbf{h}$ is a plane in \mathbb{R}^{3} tangent to the graph of $z=f(\mathbf{x}+\mathbf{h})$ at $(\mathbf{h}=0, z=f(\mathbf{x}))$. If \mathbf{u} is a unit vector in \mathbb{R}^{2}, the line with direction vector $\left(\mathbf{u},\left(D_{\mathbf{u}} f\right)(\mathbf{x})\right)$ through $(\mathbf{h}=\mathbf{0}, z=f(\mathbf{x}))$ is in the tangent plane because $\left(D_{\mathbf{u}} f\right)(\mathbf{x})=\nabla f \cdot \mathbf{u}$.

Mean Value Theorem

Theorem

Suppose f is continuous on $[a, b]$ and differentiable on (a, b). Then there is at least one $c \in(a, b)$ such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$.

Proof.

The line through $(a, f(a))$ and $(b, f(b))$ has slope $\frac{f(b)-f(a)}{b-a}$. Let

$$
g(x)=f(x)-\frac{f(b)-f(a)}{b-a}(x-a) .
$$

Then g is continuous on $[a, b]$ and differentiable on (a, b). $g(b)=g(a)$, so Rolle's Theorem states that there must be $c \in(a, b)$ such that $g^{\prime}(c)=f^{\prime}(c)-\frac{f(b)-f(a)}{b-a}=0$.

Applications of MVT

Definition

We say that a function f is increasing (respectively strictly increasing) on an interval I, if $f(a) \leq f(b)$ (resp. $f(a)<f(b)$ whenever $a, b \in I$ and $a<b$. We define decreasing and strictly decreasing functions similarly.

Theorem (Interpretation of the derivative)

Suppose f is differentiable on the open interval I.
a If $\left|f^{\prime}(x)\right| \leq C$ for all $x \in I$, then $|f(b)-f(a)| \leq C|b-a|$ for all $a, b \in l$.
b If $f^{\prime}(x)=0$ for all $x \in I$, then f is constant on I.
c If $f^{\prime}(x) \geq 0$ (resp. $f^{\prime}(x)>0, f^{\prime}(x) \leq 0$, or $f^{\prime}(x)<0$) for all $x \in I$, then f is increasing (resp. strictly increasing, decreasing, strictly decreasing) on I.

Proof

Proof.

Let $a, b \in I$. Since f is differentiable on I and $[a, b] \subset I, f$ is continuous on I. Then the MVT gives us a point $c \in(a, b)$ such that $f(b)-f(a)=f^{\prime}(c)(b-a)$. For $a,\left|f^{\prime}(c)\right| \leq C$, so $|f(b)-f(a)| \leq C|b-a|$. Parts b, c are proved similarly.

Remark

If all we know about f is that f is differentiable at a and $f^{\prime}(a)>0$, it does not follow that f is increasing in some neighborhood of a.

Generalized MVT

Theorem (Generalized MVT)

Suppose that f and g are continuous on $[a, b]$, differentiable on (a, b), and that $g^{\prime}(x) \neq 0$ for all $x \in(a, b)$. Then there is $c \in(a, b)$ such that

$$
\frac{f^{\prime}(c)}{g^{\prime}(c)}=\frac{f(b)-f(a)}{g(b)-g(a)}
$$

Proof of Generalized MVT

Proof

- Let $h(x)=$ $(f(b)-f(a))(g(x)-g(a))-(g(b)-g(a))(f(x)-f(a))$.
- Then h is continuous on $[a, b]$, differentiable on (a, b), and $h(a)=h(b)=0$.
- By Rolle's Theorem there is $c \in(a, b)$ such that $h^{\prime}(c)=(f(b)-f(a)) g^{\prime}(c)-(g(b)-g(a)) f^{\prime}(c)=0$.
- Since g^{\prime} is never 0 on $(a, b), g^{\prime}(c) \neq 0$ and $g(b)-g(a) \neq 0$ (by MVT).
- Then dividing by $g^{\prime}(c)(g(b)-g(a))$ gives the result.

Remark

If we use f and g to parameterize a curve: $y=f(t), x=g(t)$, $t \in[a, b]$, then by the chain rule, $\frac{d y}{d x}=\frac{f^{\prime}(t)}{g^{\prime}(t)}$. In this case the Generalized MVT says that there is a tangent line to the parameterized curve, that is parallel to the secant line through $(a, f(a))$ and $(b, f(b))$.

Application of Generalized MVT

Theorem (L'Hôpital's Rule I)

Suppose f and g are differentiable functions on (a, b) and

$$
\lim _{x \rightarrow a+} f(x)=\lim _{x \rightarrow a+} g(x)=0
$$

If g^{\prime} never vanishes on (a, b) and

$$
\lim _{x \rightarrow a+} \frac{f^{\prime}(x)}{g^{\prime}(x)}=L
$$

then g never vanishes on (a, b) and

$$
\lim _{x \rightarrow a+} \frac{f(x)}{g(x)}=L
$$

