MATH 3335 HOMEWORK \# 2, DUE FRIDAY SEPTEMBER 6

PROFESSOR WAGNER

Do p. $34 \# 14,18,23,25,28 . \# 28$ may need explanation. "The angle subtended at the circumference by a diameter of a circle" is an angle formed by selecting a point P on the circle and drawing two lines from P to the ends of the diameter. Show that the angle formed by these lines at P is a right angle, using vector methods.
(1) Express $2 \mathbf{i}-\mathbf{j}+3 \mathbf{k}$ as the sum of a vector parallel, plus a vector perpendicular, to $2 \mathbf{i}+4 \mathbf{j}-2 \mathbf{k}$.
(2) Find the dihedral angle between the planes

$$
\begin{array}{r}
2 x+y-2 z=5 \\
3 x-4 y=2
\end{array}
$$

(3) Find a vector parametric equation for the line of intersection for the two planes in $\# 2$.
(4) Find the distance between the planes

$$
\begin{aligned}
& 2 x+y-2 z=5 \\
& 2 x+y-2 z=-1
\end{aligned}
$$

(5) Find the distance from the point $(1,-2,3)$ to the line $\frac{x}{2}+y-z=0$.
(6) Find an equation for the plane through the points $(1,0,-1),(2,0,1),(1,1,0)$.
(7) Find the altitude of a parallelepiped determined by \mathbf{a}, \mathbf{b}, and \mathbf{c}, if the base is taken to be the parallelogram determined by \mathbf{a} and \mathbf{b}, and if

$$
\begin{aligned}
& \mathbf{a}=(1,0,1), \\
& \mathbf{b}=(0,2,1) \\
& \mathbf{c}=(1,3,0) .
\end{aligned}
$$

[^0]
[^0]: Date: September 2, 2016.

