MATH 3335 HOMEWORK \# 5, DUE OCTOBER 11

PROFESSOR WAGNER

Do p. $1121,3-5,7-12,14,15,22,30,31,35-36$. Turn in $8,22,31$.
p. 117 Do 1-4. Turn in 2.
p. $1241,3-5,7,8,10,11$. Turn in $4,10,11$. Show work!

Turn in solutions to the following problems:
(1) Suppose $f(x, y, z)$ is continuously differentiable and that $\nabla f(3,5,7) \neq 0$. If the tangent plane to the surface $f(x, y, z)=f(3,5,7)$ has the equation

$$
11(x-3)+13(y-5)+2(z-7)=0
$$

find:
(a) $\frac{\partial z(x, y)}{\partial x}$ at $x=3, y=5$, where $z(x, y)$ is implicitly defined by the equation $f(x, y, z)=f(3,5,7)$.
(b) $\frac{\partial x(y, z)}{\partial z}$ at $y=5, z=7$, where $x(y, z)$ is implicitly defined by the equation $f(x, y, z)=f(3,5,7)$.
(2) Consider the equation:

$$
\begin{equation*}
\frac{x^{2}}{3}=x y+2 y z+x z-10 \tag{1}
\end{equation*}
$$

(a) Identify a function $f(x, y, z)$ for which (1) describes a level set.
(b) Find $\nabla f(3,1,2)$ and find the equation of the tangent plane to (1) at $(3,1,2)$.
(c) Let $z=g(x, y)$ be defined implicitly by (1) in a neighborhood of $(3,1,2)$. Find $\frac{\partial z}{\partial x}(3,1)$.
(d) Let $x=h(y, z)$ be defined implicitly by (1) in a neighborhood of $(3,1,2)$. Find $\frac{\partial x}{\partial y}(1,2)$.

