Math 3338
Midterm review sheet

1. Let T be an exponential random variable with mean 5.
a. Find $P(T>5)$.

10 pts
b. Find $\mathrm{P}(\mathrm{T}>8 \mid \mathrm{T}>3)$.

10 pts
2. Suppose X is a random variable with moment generating function
$M(t)=\frac{1}{3} e^{-3 t}+\frac{1}{6}+\frac{1}{4} e^{2 t}+\frac{1}{4} e^{4 t}$
a. Find E(X).

10 pts
b. Find Var(X).

10 pts
c. Find $\mathrm{P}(\mathrm{X}<0)$.
3. Let X be a random variable with density function $f(x)=\frac{1}{2 \sqrt{x}}, \quad 0<x \leq 1$
Find $E(X)$ and $\operatorname{Var}(X)$.
4. Let X and Y have joint p.d.f.
$f(x, y)=\left\{\begin{array}{cc}6(1-(x+y)), & x>0, y>0, x+y<1 \\ 0, & \text { otherwise }\end{array}\right.$
a. Determine the probability that $\mathrm{x}<.2$.

14 pts
b. Find the marginal density for X .
5. An insurance company insures a large number of homes. The insured value, X, of a randomly selected home is assumed to follow a distribution with density function
$f_{X}(x)=\left\{\begin{array}{cc}3 x^{-4} & \text { for } x>1 \\ 0 & \text { otherwise }\end{array}\right.$
Given that a randomly selected home is insured for at least 1.5, what is the probability that it is insured for less than 2?
6. Random variables X and Y have joint p.d.f:
$f_{X Y}(x, y)=\frac{1}{2}, \quad 0 \leq x \leq y \leq 2$.
a. Find the marginal pdf's $f_{x}(x)$ and $f_{Y}(y)$.

12 pts
b. Find the conditional pdf $f_{x \mid y=y}(x)$.

12 pts
7. Bowl A contains 4 red chips and 8 white chips.

Bowl B contains 8 red chips and 4 white chips.
Bowl C contains 6 red chips and 6 white chips.
One of the bowls is selected at random, and a chip is drawn. If this chip is white, what is the probability that Bowl A was chosen?

