\qquad

1. 10 entrants in a baking contest bake one pie each. There are 6 pecan pies and 4 key-lime pies. Each pie has its baker's name labeled on the bottom.
a. In how many ways can the 10 pies be placed in a single line?
b. If the six pecan pies are put on one table, and the 4 key-lime pies are put on another table, how many ways are there to line up the two groups of pies on their respective tables? 6 pts
c. The judges assign a grade of "outstanding," "excellent," or "good enough for the UH cafeteria," to each of the 10 pies. How many different scorecards are possible?

8 pts
d. Five pies are chosen at random. What is the probability that exactly 3 of the pecan pies are among the chosen?

10 pts
2. Let X be the weight, in ounces, of an orange selected at random from a certain crop. Oranges weighing less than 3 ounces are regarded as defective. Suppose X is normal with mean 4 and variance . 25 ($N(4, .25)$).
a. What is $P(X \leq 3)$? 10 pts
b. In a bag of 12 oranges from this crop, what is the probability that 2 weigh less than 3 ounces? 10 pts
3. Let T be an exponential random variable with mean 5. a. Find $P(T>5)$. 10 pts
b. Find $P(T>8 \mid T>3) . \quad 10$ pts
4. Suppose X is a random variable with moment generating function
$M(t)=\frac{1}{3} e^{-3 t}+\frac{1}{6}+\frac{1}{4} e^{2 t}+\frac{1}{4} e^{4 t}$
a. Find $\mathrm{E}(\mathrm{X})$. 10 pts
b. Find Var (X). 10 pts

NAME
May 8, 2000
c. Find $P(X<0)$.
5. You have a random number generator for the uniform distribution on the interval [0,1]. If Z is a random variable representing this random number generator, what function of $Z, X=g(Z)$, will have the c.d.f. $F(x)=\sqrt{x / 4}, 0 \leq x \leq 4$?
6. You are rolling two ordinary six-sided dice.
a. What is the probability that the first "doubles" (i.e., both dice match) occurs on or after the $4^{\text {th }}$ roll?
b. What is the probability that the third "doubles" occurs on the $20^{\text {th }}$ roll?
7. You are responsible for watching a cloud chamber to count "cosmic ray" particles. These particles enter the cloud chamber at a rate of 1 every 20 minutes. You may stop watching after you have counted another 3 comic ray particles. You are supposed to meet a friend for lunch in 60 minutes. How do you calculate the probability that you will be finished watching the cloud chamber in 60 minutes? 12 pts
8. X and Y are independent random variables. X and Y have the same p.d.f:
$f(x)=\left\{\begin{array}{l}1 / 6, x=0 \\ 1 / 3, x=1 \\ 1 / 2, x=2\end{array}\right.$
Find the p.d.f for $Z=X+Y$.
9. A random rectangle has sides of length X and Y, where X and Y are independent random variables with pdfs:
$X: f(x)=\frac{1}{3} e^{-x / \beta}, \quad x \geq 0$,
$Y: g(y)=\frac{1}{4} x e^{-x / 2}, x \geq 0$.
What is the expected value for the area of this rectangle?
10 pts
10. Let X be a random variable with density
function $f(x)=\frac{1}{2 \sqrt{x}}, \quad 0<x \leq 1$
Find E(X) and Var(X).
12 pts

MATH 3338
May 8, 2000

EXAM 2
 NAME

11. A bag of tulip bulbs contains 50 bulbs for pink tulips, 20 bulbs for purple tulips, and 5 bulbs for black tulips. In your experience, the germination rates for pink, purple, and black tulip bulbs are 50%, 60% and 30%, respectively. You pick one bulb from the bag, and plant it. It germinates. What is the probability that it will produce black flowers?

14 pts

