\qquad

1. Let

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
3 \\
2
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}
2 \\
3 \\
4
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right], \quad \mathbf{b}_{1}=\left[\begin{array}{l}
3 \\
3 \\
6
\end{array}\right], \mathbf{b}_{2}=\left[\begin{array}{l}
2 \\
6 \\
2
\end{array}\right]
$$

(a) Determine whether \mathbf{b}_{1} is in $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$.
(b) Determine whether \mathbf{b}_{2} is in $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$.
(c) If \mathbf{b}_{1} or \mathbf{b}_{2} is in $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$, find weights x_{1}, x_{2}, x_{3} such that $\mathbf{b}_{i}=x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+x_{3} \mathbf{v}_{3}$.
2. Determine which of the following sets are bases for $P_{2}(\mathbb{R})$
(a) $\left\{1+4 x-x^{2}, 2-2 x+18 x^{2},-1+x-9 x^{2}\right\}$.
(b) $\left\{-1+3 x-2 x^{2}, 2-4 x-5 x^{2}, 4-10 x-6 x^{2}\right\}$.
(c) $\left\{1-2 x+x^{2},-2+3 x-x^{2},-2-x+6 x^{2}\right\}$.
3. Find a subset of S which is a basis for the span of S, if

$$
S=\left\{\left[\begin{array}{c}
-3 \\
1 \\
2
\end{array}\right],\left[\begin{array}{c}
6 \\
-2 \\
-4
\end{array}\right],\left[\begin{array}{c}
-1 \\
2 \\
5
\end{array}\right],\left[\begin{array}{l}
1 \\
3 \\
8
\end{array}\right],\left[\begin{array}{l}
-7 \\
-1 \\
-4
\end{array}\right]\right\}
$$

4. Let S be the subspace of $M_{3 \times 3}(\mathbb{R})$ which consists of all 3×3 real symmetric matrices $\left(A^{T}=A\right)$. Find a basis for S. What is the dimension of S ?
