Math 4377 February 15, 2019

Homework 5

Name ___

- Let $\beta = \{1, x, x^2\}$ be the standard basis of $P_2(\mathbb{R})$.
- 1. Let $\mathbf{T}: P_2(\mathbb{R}) \to P_2(\mathbb{R})$ be the linear transformation $\mathbf{T}(p(x)) = xp'(x)$. Let $\mathbf{S}: P_2(\mathbb{R}) \to P_2(\mathbb{R})$ be the linear transformation $\mathbf{S}(p(x)) = \frac{d}{dx} (xp(x))$.
 - (a) Find $[\mathbf{T}]_{\beta}$ and $[\mathbf{S}]_{\beta}$
 - (b) Is \mathbf{T} one-to-one?
 - (c) is \mathbf{T} onto?
 - (d) is **S** one-to-one?
 - (e) is \mathbf{S} onto?
- 2. Let $\mathbf{P} : P_2(\mathbb{R}) \to P_2(\mathbb{R})$ project $P_2(\mathbb{R})$ on $Span\{1, x^2\}$ along $Span\{1-x\}$. Find $[\mathbf{P}]_{\beta}$. *Hint:* $\mathbf{P}(1)$ must be 1, What is $\mathbf{P}(x)$?
- 3. Let V be a vector space with finite dimension, and let $\mathbf{T} : V \to V$ be a linear transformation. Show that if $\mathbf{N}(\mathbf{T}) = N(\mathbf{T}^2)$, then $\mathbf{R}(\mathbf{T}) \cap \mathbf{N}(\mathbf{T}) = \{\mathbf{0}\}$. Show that as a consequence, $V = \mathbf{R}(T) \bigoplus \mathbf{N}(T)$.