\qquad
Let $\beta=\left\{1, x, x^{2}\right\}$ be the standard basis of $P_{2}(\mathbb{R})$.

1. Let $\mathbf{T}: P_{2}(\mathbb{R}) \rightarrow P_{2}(\mathbb{R})$ be the linear transformation $\mathbf{T}(p(x))=x p^{\prime}(x)$. Let $\mathbf{S}: P_{2}(\mathbb{R}) \rightarrow P_{2}(\mathbb{R})$ be the linear transformation $\mathbf{S}(p(x))=\frac{d}{d x}(x p(x))$.
(a) Find $[\mathbf{T}]_{\beta}$ and $[\mathbf{S}]_{\beta}$
(b) Is \mathbf{T} one-to-one?
(c) is \mathbf{T} onto?
(d) is \mathbf{S} one-to-one?
(e) is \mathbf{S} onto?
2. Let $\mathbf{P}: P_{2}(\mathbb{R}) \rightarrow P_{2}(\mathbb{R})$ project $P_{2}(\mathbb{R})$ on $\operatorname{Span}\left\{1, x^{2}\right\}$ along $\operatorname{Span}\{1-x\}$. Find $[\mathbf{P}]_{\beta}$. Hint: $\mathbf{P}(1)$ must be 1 , What is $\mathbf{P}(x)$?
3. Let V be a vector space with finite dimension, and let $\mathbf{T}: V \rightarrow V$ be a linear transformation. Show that if $\mathbf{N}(\mathbf{T})=N\left(\mathbf{T}^{2}\right)$, then $\mathbf{R}(\mathbf{T}) \cap \mathbf{N}(\mathbf{T})=\{\mathbf{0}\}$. Show that as a consequence, $V=\mathbf{R}(T) \bigoplus \mathbf{N}(T)$.
