\qquad

1. Find the change of coordinates matrix that changes β^{\prime}-coordinates to β-coordinates.
(a) $\beta=\{(1,1),(-1,1)\}$, and $\beta^{\prime}=\{(2,1),(1,2)\}$.
(b) $\beta=\{(1,0),(0,1)\}$, and $\beta^{\prime}=\{(3,0),(0,3)\}$
2. Let \mathbf{T} be the linear operator on \mathbb{R}^{2} defined by

$$
T\left(\left[\begin{array}{l}
a \\
b
\end{array}\right]\right)=\left[\begin{array}{c}
3 a+b \\
-a+2 b
\end{array}\right]
$$

Let β be the standard ordered basis for \mathbb{R}^{2}, and let

$$
\beta^{\prime}=\left\{\left[\begin{array}{l}
1 \\
1
\end{array}\right],\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right\}
$$

Use Theorem 2.23 and the fact that

$$
\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]^{-1}=\frac{1}{2}\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]
$$

to find $[\mathbf{T}]_{\beta^{\prime}}$.

