\qquad

1. Let $V=\mathbb{R}^{2}$ and let $\beta=\left\{\left[\begin{array}{l}3 \\ 2\end{array}\right],\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}$. Find explicit formulas for vectors in the dual basis β^{*} for V^{*}, as in Example 4 p. 120.
2. Define $f \in \mathbb{R}^{2 *}$ by $f(x, y)=x-3 y$ and $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $T(x, y)=(x-2 y, 3 y)$.
(a) Compute $T^{t}(f)$.
(b) Compute $\left[T^{t}\right]_{\beta^{*}}$, where β is the standard basis for \mathbb{R}^{2} and $\beta^{*}=\left\{f_{1}, f_{2}\right\}$ is the dual basis, by finding scalars a, b, c and d such that $T^{t}\left(f_{1}\right)=a f_{1}+b f_{2}$ and $T^{t}\left(f_{2}\right)=c f_{1}+d f_{2}$.
(c) Compute $[T]_{\beta}$ and $\left([T]_{\beta}\right)^{t}$ and compare your results with (b).
3. Let

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
3 & 5 & 2
\end{array}\right]
$$

Use elementary row operations to reduce A to I_{3}. Then use the elementary row operations to express A^{-1} as a product of elementary matrices. Then express A as a product of elementary matrices.

