Math 4377 March 8, 2019

Homework 7 Name ____

- 1. Let $V = \mathbb{R}^2$ and let $\beta = \left\{ \begin{bmatrix} 3\\2 \end{bmatrix}, \begin{bmatrix} 1\\1 \end{bmatrix} \right\}$. Find explicit formulas for vectors in the dual basis β^* for V^* , as in Example 4 p. 120.
- 2. Define $f \in \mathbb{R}^{2^*}$ by f(x, y) = x 3y and $T : \mathbb{R}^2 \to \mathbb{R}^2$ by T(x, y) = (x 2y, 3y). (a) Compute $T^t(f)$.
 - (b) Compute $[T^t]_{\beta^*}$, where β is the standard basis for \mathbb{R}^2 and $\beta^* = \{f_1, f_2\}$ is the dual basis, by finding scalars a, b, c and d such that $T^t(f_1) = af_1 + bf_2$ and $T^t(f_2) = cf_1 + df_2$.
 - (c) Compute $[T]_{\beta}$ and $([T]_{\beta})^t$ and compare your results with (b).

3. Let

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 5 & 2 \end{bmatrix}.$$

Use elementary row operations to reduce A to I_3 . Then use the elementary row operations to express A^{-1} as a product of elementary matrices. Then express A as a product of elementary matrices.