\qquad

1. Let

$$
A=\left[\begin{array}{lll}
4 & 0 & 0 \\
1 & 2 & 4 \\
0 & 0 & 4
\end{array}\right]=\left[\begin{array}{ccc}
2 & -4 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{ccc}
4 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & -1
\end{array}\right]\left[\begin{array}{ccc}
\frac{1}{2} & 0 & 2 \\
0 & 0 & 1 \\
-\frac{1}{2} & 1 & -2
\end{array}\right]=P D P^{-1}
$$

Use the diagonalization to find the eigenvalues of A and a basis for each eigenspace.
2. Diagonalize $A=\left[\begin{array}{cc}-4 & -1 \\ 1 & -2\end{array}\right]$ or explain why it is not diagonalizable.
3. Diagonalize $A=\left[\begin{array}{cc}-4 & 2 \\ 1 & -2\end{array}\right]$ or explain why it is not diagonalizable.
4. Let $T: P_{3}(\mathbb{R}) \rightarrow P_{3}(\mathbb{R})$ by $T(f(x))=f(-x)$.
(a) Find all eigenvalues of T.
(b) Find all eigenvectors of T.
(c) Find an ordered basis β for $P_{3}(\mathbb{R})$ such that $\mathbf{r} T_{\beta}$ is diagonal.
5. Prove that if an $n \times n$ matrix A is invertible and diagonalizable, then A and A^{-1} are simultaneously diagonalizable (see problems 17-19).

