Math 4377 April 15, 2019

Homework 9

Name ___

1. Let

$$A = \begin{bmatrix} 4 & 0 & 0 \\ 1 & 2 & 4 \\ 0 & 0 & 4 \end{bmatrix} = \begin{bmatrix} 2 & -4 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} \frac{1}{2} & 0 & 2 \\ 0 & 0 & 1 \\ -\frac{1}{2} & 1 & -2 \end{bmatrix} = PDP^{-1}.$$

Use the diagonalization to find the eigenvalues of A and a basis for each eigenspace.

2. Diagonalize
$$A = \begin{bmatrix} -4 & -1 \\ 1 & -2 \end{bmatrix}$$
 or explain why it is not diagonalizable.

- 3. Diagonalize $A = \begin{bmatrix} -4 & 2\\ 1 & -2 \end{bmatrix}$ or explain why it is not diagonalizable.
- 4. Let $T: P_3(\mathbb{R}) \to P_3(\mathbb{R})$ by T(f(x)) = f(-x).
 - (a) Find all eigenvalues of T.
 - (b) Find all eigenvectors of T.
 - (c) Find an ordered basis β for $P_3(\mathbb{R})$ such that $\mathbf{r}T_{\beta}$ is diagonal.
- 5. Prove that if an $n \times n$ matrix A is invertible and diagonalizable, then A and A^{-1} are simultaneously diagonalizable (see problems 17-19).